

Techniques in Biophotonic Imaging

Join us for a Webinar on March 21

REGISTER NOW

Free Webinar

Dr. Kimani C. Toussaint Jr.
Photonics Research of Bio/Nano Environments (PROBE)

lab group, University of Illinois

QUANTITATIVE IMAGING OF COLLAGEN FIBERS USING SECOND-HARMONIC GENERATION

Advances in nonlinear microscopy, e.g., multiphoton fluorescence microscopy and second-harmonic

generation (SHG) microscopy, have permitted both noninvasive and highresolution imaging of biological specimens. In recent years, there has been
increasing effort to use these techniques to perform quantitative inspection of
specimens under study. In his talk, Dr. Toussaint will focus on two particular
techniques that the PROBE group is researching: Fourier transform-secondharmonic generation (FT-SHG) and polarization-second-harmonic generation
(P-SHG). Information pertaining to collagen fiber structural organization is
obtained using FT-SHG, which combines SHG with spatial harmonic analysis,
while P-SHG carries information that is sensitive to molecular-level changes to
collagen fibers, by exploiting the intrinsic coherence in the SHG process to
determine the polarization-dependent normalized tensor components of the
2nd-order scattering coefficient. Potential biomedical applications will be
discussed.

Dr. Melissa Skala

Optical Imaging Laboratory, Vanderbilt University School of Engineering

PHOTOTHERMAL OPTICAL COHERENCE TOMOGRAPHY OF NANOPARTICLE CONTRAST AGENTS

OCT is an important biomedical imaging modality, filling the spatial niche between ultrasound and microscopy, but it suffers from an inherent lack of molecular contrast. Dr.

Skala's group has shown that photothermal detection of highly absorptive nanoparticles can be achieved by incorporating an amplitude-modulated laser into the sample arm of a standard OCT system. This talk will cover the principles of photothermal OCT, its characterization, and in vitro and in vivo molecular imaging applications using gold nanorod contrast agents.

Dr. Ofer Levi

Institute of Biomaterials and Biomedical Engineering, University of Toronto

MULTIMODAL OPTICAL NEURAL IMAGING WITH VCSEL LIGHT SOURCES

Dr. Levi presents the development of a multi-modality optical neural imaging system, to image blood flow velocity and oxygenation in a rat brain, using a fast CCD camera and miniature VCSEL illumination. His group

combined two techniques of laser speckle contrast imaging (LCSI) and intrinsic optical signal imaging (IOSI) simultaneously, using these compact laser sources, to monitor induced cortical ischemia in a full field format with high temporal acquisition rates. Simultaneous imaging is based on fast coherence reduction techniques applied to vertical cavity surface-emitting lasers (VCSELs) operating at 680, 795 and 850 nm. His group has demonstrated the use of this system in tracking ischemia and with adding a fluorescence modality, in evaluating the disruption of a blood-brain barrier and tracking seizure activity in the brain. Finally, he will present his group's initial design and system analysis for a low-cost CMOS-based portable imaging system as a minimally invasive method for long-term neurological studies in un-anesthetized animals. This system will provide a better understanding of the progression and treatment efficacy of various neurological disorders in freely behaving animals.

Title: Techniques in Biophotonic Imaging
Date: Thursday, March 21, 2013
Time: 1:00 PM - 2:00 PM EDT

After registering you will receive a confirmation email containing information about joining the Webinar.

System Requirements

PC-based attendees
Required: Windows® 7, Vista, XP or 2003 Server

Mac®-based attendees Required: Mac OS® X 10.6 or newer

Mobile attendees Required: iPhone®, iPad®, Android™ phone or Android tablet

Space is limited.
Reserve your Webinar seat now at: https://www3.gotomeeting.com/register/362389574