Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
SPECIAL ANNOUNCEMENT
2016 Photonics Buyers' Guide Clearance! – Use Coupon Code FC16 to save 60%!
share
Email Facebook Twitter Google+ LinkedIn Comments

'Slow Light' May Enable Benchtop Black Holes

Photonics Spectra
Mar 2002
Ulf Leonhardt of St. Andrews University in St. Andrews, UK, hopes to bring black holes -- or, at least, an optical analog of their event horizons -- to the lab. In the Jan. 24 issue of Nature, he describes how the manipulation of an electromagnetically induced transparency medium should produce a wave catastrophe in a "slow light" field, yielding radiation akin to the emissions from black holes theorized by Stephen W. Hawking.

Leonhardt, a theoretical physicist, suggests that altering the intensity of the control light on the medium to a parabolic profile should generate pairs of polaritons out of the vacuum on either side of a logarithmic phase singularity. The polaritons should emerge as photons with a characteristic spectrum and in sufficient numbers to be seen with the naked eye.

Unlike the particle pairs knocked into existence at a black hole's event horizon, the photons on both sides of Leonhardt's singularity could be investigated for such phenomena as entanglement.


Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x Subscribe to Photonics Spectra magazine - FREE!