Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
SPECIAL ANNOUNCEMENT
2016 Photonics Buyers' Guide Clearance! – Use Coupon Code FC16 to save 60%!
share
Email Facebook Twitter Google+ LinkedIn Comments

Laser Ablation Creates Nanowires

Photonics Spectra
May 1998
Michael D. Wheeler

An Nd:YAG laser is one tool in a new technique that creates nanometer-scale "wires" for atomic microscopy and submicron electronics.
Chemistry Professor Charles M. Lieber and graduate student Alfredo M. Morales of Harvard University took a novel approach to producing these wires: They combined laser ablation and vapor-liquid-solid growth to create single-crystal silicon and germanium nanowires. Not only did the nanowires have an extremely small diameter -- as small as 3 nm -- but they were longer than 1 µm.
The technique involves using a pulsed frequency-doubled Nd:YAG laser emitting at 532 nm. The laser vaporizes a silicon target containing a catalyst -- in this case, iron.
The team put the target in a quartz furnace tube heated to 1200 °C, monitoring the temperature and pressure. When the laser ablated the target, the reaction caused a dense, hot vapor of silicon and iron. The vapor condensed into small clusters while a stream of gas carried it into a cooling chamber. Throughout the process, Morales and Lieber adjusted the furnace temperature, ensuring that the silicon-iron cluster remained in a liquid state.
Nanowire growth began after the liquid became supersaturated with silicon, causing silicon-iron nanodroplets to ride atop a growing nanowire. The growth terminated when the nanowire passed out of the hot reaction zone and into the cold chamber.


Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x Subscribe to Photonics Spectra magazine - FREE!