Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
SPECIAL ANNOUNCEMENT
2016 Photonics Buyers' Guide Clearance! – Use Coupon Code FC16 to save 60%!
share
Email Facebook Twitter Google+ LinkedIn Comments

Gold Nanoparticle Probes Display Efficient Photoluminescence

Photonics Spectra
Jun 2005
Investigators at Boston College in Chestnut Hill, Mass., suggest that gold nanoparticles are attractive substitutes for fluorophores or semiconductor nanoparticles as labels in the imaging of microscopic biological structures. In a study published in Nano Letters online May 18, they report that multiphoton-absorption-induced luminescence in 2.5- to 125-nm-diameter gold nanoparticles offers comparable emission intensities to and higher quantum efficiencies than fluorophores and better short- and long-term photostability than semiconductor nanoparticles.

To measure the response of the gold nanoparticles, the researchers excited thin films of uncoated and silica-coated samples using a homebuilt Ti:sapphire laser that produced sub-100-fs pulses of 790-nm radiation at a repetition rate of 76 MHz. An inverted microscope with a 1.3 NA, 40× objective, both from Carl Zeiss GmbH of Jena, Germany, served as the optical setup. Single-photon-counting avalanche photodiodes and a fiber optic spectrometer collected luminescence data and emission spectra, respectively.

Logarithmic plots of the emission intensity versus laser power showed that the excitation is a three-photon process, enabling strong emission from relatively weak excitation pulses. Employing synthesis techniques to produce gold nanoparticles with the desired asymmetries to exhibit electric field enhancements in the near-IR, the metal structures promise to enable in vivo imaging at the single-molecule level, the researchers suggest.


Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x Subscribe to Photonics Spectra magazine - FREE!