Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
SPECIAL ANNOUNCEMENT
2016 Photonics Buyers' Guide Clearance! – Use Coupon Code FC16 to save 60%!
share
Email Facebook Twitter Google+ LinkedIn Comments

Photon Thrusters, Tethers Pose Flight Formation Fix

Photonics.com
May 2006
TUSTIN, Calif., May 16, 2006 -- A new ultrahigh precision, contamination-free formation flight method based on photon thrusters and tethers may be a solution to maintaining a precise spacecraft (satellite) configuration in space, said NASA.

thruster.jpgThe NASA Institute for Advanced Concepts (NIAC) has awarded Young Bae a $75,000 grant to develop the method. Bae is the founder of the Bae Institute, a Tustin, Calif., developer of space and medical technologies. He presented his grant-winning paper at an NIAC Phase I Fellows meeting in March, demonstrating how existing technologies can allow clusters of micro-, nano- and pico-spacecraft to fly in ultrahigh precision formations.
(niac.usra.edu/files/library/meetings/
fellows/mar06/1047Bae.pdf
)

Tethered, or formation-flying, spacecraft have the potential to dramatically lower launch weights and station-keeping costs while enabling a quantum leap in observation resolutions from space, NASA said. Thus far, a solution for maintaining a precise spacecraft configuration in space has proven elusive. The agency said, "Bae's proprietary (patent-pending) photon tether formation-flight (PTFF) system is projected to accomplish this with less-than-nanometer accuracy."

Bae said, "PTFF minimizes spacecraft system architecture, weight and contamination-free power consumption by orders of magnitude over present monolithic space mission systems." His PTFF work has also been published in the peer-reviewed journal of the American Institute of Physics Space Technology and Applications International Forum-STAIF 2006.

The core technology is a combination of a push force from photon thrusters and a pull force from Kevlar tethers for precise intersatellite control. Photon thrusters amplify thrust tens of thousands of times through a proprietary intracavity system for bouncing photons off of mirrors between satellites.

"As a result, the thrust power requirement for formations of 100-kg spacecraft configurations can be reduced to several watts per pair of satellites, well within today's space power budgets," Bae said. "No other propellants are needed, providing mass energy savings and contaminant-free operation for future space missions equipped with highly sensitive sensors."

Bae said his formation-flying control system has NASA and non-NASA applications for precise geophysical monitoring, environmental monitoring, mapping, imaging, surveillance, astronomical or GPS applications.

For more information, visit: www.baeinstitute.com



Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.