Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

  • Intel Develops Terascale Research Chips
Sep 2006
SAN FRANCISCO, Sept. 28, 2006 -- Intel Corp. unveiled details this week of its terascale research prototype silicon, including the development of the world's first programmable processor said to deliver 1 trillion floating point operations per second (Tflops). The company also described the significant technical challenges that need to be addressed if computing, from personal devices to giant data centers, is to keep up with increasing demand by consumers and businesses for Internet-based software, services and media-rich experiences.

Justin Rattner, Intel senior fellow and chief technology officer, said  in a speech Tuesday at the 10th Intel Developer Forum -- a global technology forum for hardware and software developers -- that during the next decade, online software services hosted by mega data centers with more than a million servers will allow people to access personal data, media and applications from any high-performance device to play photorealistic games, share real-time video and do multimedia data mining. This new usage model will challenge the industry to deliver the one teraFLOPs of performance and terabytes of bandwidth, he said.

“The rise of mega data centers and the need for high-performance personal devices will require the industry to innovate at every level, from many-core processors to higher-speed communications between systems, while delivering better security and energy efficiency,” said Rattner. “Solving these challenges will bring benefits to all computing devices while creating new markets and opportunities for developers and systems designers.”

Rattner outlined the importance of three major silicon breakthroughs. He started by revealing the first details of Intel’s terascale research prototype silicon, the world’s first programmable TeraFLOP processor. Containing 80 simple cores and operating at 3.1 GHz, the goal of this experimental chip is to test interconnect strategies for rapidly moving terabytes of data from core to core and between cores and memory.

“When combined with our recent breakthroughs in silicon photonics, these experimental chips address the three major requirements for terascale computing: teraOPS of performance, terabytes-per-second of memory bandwidth and terabits-per-second of I/O capacity,” said Rattner. “While any commercial application of these technologies is years away, it is an exciting first step in bringing terascale performance to PCs and servers.”

Unlike existing chip designs where hundreds of millions of transistors are uniquely arranged, this chip’s design consists of 80 tiles laid out in an 8-by-10 block array. Each tile includes a small core, or compute element, with a simple instruction set for processing floating-point data, but is not "Intel Architecture" compatible. The tile also includes a router connecting the core to an on-chip network that links all the cores to each other and gives them access to memory.

The second major innovation is a 20-megabyte SRAM memory chip that is stacked on and bonded to the processor die. Stacking the die makes possible thousands of interconnects and provides more than a terabyte-per-second of bandwidth between memory and the cores.

Rattner demonstrated a third innovation, the recently announced hybrid silicon laser chip developed in collaboration with researchers at University of California, Santa Barbara. See also, "Hybrid Silicon Laser Chip That Emits, Guides Light Developed.") With this breakthrough, dozens or maybe hundreds of hybrid silicon lasers could be integrated with other silicon photonic components onto a single silicon chip. This could lead to a terabit-per-second optical link capable of speeding terabytes of data between chips inside computers, beteen PCs and among servers inside data centers.

Intel said it will work closely with the industry -- original equipment manufacturers, independent software vendors and developers -- on a number of fronts to make this vision of terascale computing a reality.

For more information, visit:

Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.