Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
SPECIAL ANNOUNCEMENT
2016 Photonics Buyers' Guide Clearance! – Use Coupon Code FC16 to save 60%!
share
Email Facebook Twitter Google+ LinkedIn Comments

Lasers Probe Secrets of Superfluids

Photonics Spectra
Jan 2007
Seeking to better understand the unusual properties of superfluids, researchers at Princeton University in New Jersey have devised an all-optical model that simulates the properties of these frictionless materials. Superfluid research has applications in sensor technology, atomic trapping and optical communications.

The dispersive shock waves of superfluids have been difficult to study and, therefore, analysis has been limited. The researchers, led by Jason W. Fleischer, assistant professor of electrical engineering, noted that light waves passing through nonlinear crystals and superfluids have comparable qualities: The collective motion of superfluid particles looks like the coherent waves in laser light. In the January issue of Nature Physics, they reported that this well-known, but little appreciated, similarity allowed easier and improved observations of superfluid-like and related dispersive phenomena.

In a substitution experiment, the investigators used light from a Coherent Inc. 532-nm laser split by a Mach-Zehnder interferometer. A lens placed in one arm focused the beam into an 8 × 8 × 8-mm strontium barium niobate photorefractive crystal, while the other beam served as a reference background. They applied a constant voltage of –500 V, creating a self-defocusing nonlinearity. Light exiting the crystal was imaged into a CCD camera from Uniq Vision Inc. The setup enabled the researchers to study the dynamics of dispersive shock waves, including the interaction of colliding waves.


GLOSSARY
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x Subscribe to Photonics Spectra magazine - FREE!