Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

  • Imager Eases Analysis of Space Weather

Photonics Spectra
Mar 2007
Device senses airglow features in Earth’s ionsphere.

Michael J. Lander

There’s more to bad weather than just wind and rain. When flares or coronal mass ejections occur on the surface of the sun, ensuing blasts of radiation cause storms in the Earth’s ionosphere, more than 100 km above land and sea. In fact, storms occur near the planet’s magnetic equator even under a quiet sun. Although these blustery conditions take place beyond our view, they can disrupt satellite communication, disable power grids and dramatically affect other human activities.


An airglow imager and other instruments at Cerro Tololo Inter-American Observatory in Chile imaged ionospheric disturbances, which, unlike auroras, are invisible to the unaided eye. They are seen here as dark vertical bands. The largest one, near the center of the photo, lay 500 km above the Earth and was about 70 km wide.

Researchers led by Jonathan J. Makela of the University of Illinois at Urbana-Champaign have used a narrow-field ionospheric airglow imager and two global positioning system scintillation monitors at the Cerro Tololo Inter-American Observatory near La Serena, Chile, to get a better picture of what causes these events.

The imager, which the scientists installed last year, takes advantage of a phenomenon called airglow to visualize space weather. After radiation from the sun ionizes gas molecules during the day, the released electrons recombine at night, causing the emission of photons.

Where severe perturbations of the ionosphere occur, the glow caused by this and other molecular events appears diminished -- depletions that the imager reveals with narrow-band filters and exposure times of one to two minutes. These same turbulent zones cause radio waves to scintillate — the root of much disruption to satellite signals. The global positioning system monitors enabled the researchers to perform interferometric calculations as well as to examine drift velocities and other smaller features.

The scientists presented early results of their ongoing research at the American Geophysical Union meeting in December. Already, their images and calculations have helped them develop new ways to study the time, location and severity of the disturbances.

When they compare the information with radar backscatter observations from the Jicamarca radar system near Lima, Peru, and with similar data gathered in Colombia and other locations, they may discover interactions that contribute to global trends in ionospheric activity. Combined with existing knowledge, these insights could enable navigation and communication systems that can better withstand these faraway storms. Visit to see a movie filmed at the site.

The gas of charged particles that begins approximately 50 km above the surface of the Earth and contains a sufficient quantity of electrons and ions to affect the propagation of radio waves.
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x Subscribe to Photonics Spectra magazine - FREE!