Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

  • NSB to Award RPI’s Jackson
Mar 2007
ARLINGTON, Va., March 26, 2007 --  Shirley Ann Jackson, who has led a national movement to respond to what she calls a "quiet crisis" in the science and engineering work force, will receive the Vannevar Bush Award for a lifetime of achievements in scientific research, education and senior statesman-like contributions to public policy from the National Science Board (NSB).

Jackson is president of Rensselaer Polytechnic Institute (RPI) and the first African-American woman to receive the Bush ward in its 27-year history.

Jackson also is being recognized for her advocacy on global energy security, for innovations she implemented as chairman of the US Nuclear Regulatory Commission (1995-1999), and for her role in leading an institutional transformation at the nation's oldest technology university.

Shirley Ann Jackson receives the 2007 Vannevar Bush Award for her lifetime of scientific, educational and public policy achievements. The award honors her work in theoretical physics, her leadership in workforce and global energy security issues, and for revamping Rensselaer Polytechnic Institute, the nation's oldest civilian technology university. (Photo: RPI)
"Shirley Ann Jackson has been a leader on many fronts, and she has incorporated scientific approaches into all of her work, especially on policy issues of international importance and in reforming one of the nation's important educational institutions," said NSB Chairman Steven C. Beering. "She's a national treasure deserving of the Vannevar Bush Award for her widely valued public service and contributions to the nation and the international community."

NSB will honor Jackson May 14 in a ceremony at the State Department in Washington, D.C., where she was born and raised.

Jackson has been stating her concern about impending retirements in fields of science, technology, engineering and mathematics (STEM) in both academe and industry for almost a decade, saying there are not enough students in the pipeline to replace the record number of retirements on the horizon in these fields, the NSB said in a statement. "She notes the country's economic and national security depends upon its capacity for innovation -- scientists, engineers and mathematicians whose numbers will dwindle over the next decade unless the trend is reversed.

"She believes that waking up to the 'quiet crisis' requires engaging everyone, including women and minorities who have traditionally been underrepresented in STEM fields. The crisis is 'quiet,' Jackson says, because it takes decades to educate future scientists and engineers, so 'the impact unfolds gradually.'

"She says science is in crisis because 'without innovation we fail -- as a nation and as a world.' And, she reasons that the ebbs and flows in science funding across disciplines have a 'deleterious impact on the creation of a new generation of scientists and engineers' -- and, therefore, our innovative capacity against a backdrop of increasing capabilities abroad."
Jackson presided over new renovations to Academy Hall Student Life Center (left) and a construction of new Center for Biotechnology and Interdisciplinary Studies (right), an interdisciplinary research facility that has attracted students and new faculty. (Photo: RPI)
Jackson has lectured on this topic extensively around the world. In 2002, she authored the report, "The Quiet Crisis," then took her campaign to Washington, DC, in 2004 when she became president of the American Association for the Advancement of Science.

She was actively involved in the Council on Competitiveness' National Innovation Initiative, was among the authors of the National Academies' Rising Above the Gathering Storm report and is on the National Governors Association Innovation America Task Force.
Jackson said it is now "time to turn rhetoric into reality," and that the solution must come from government, business and academe, the NSB said.

"Jackson believes global energy security is the greatest challenge of our time, and has suggested energy research as a national focal point to address it much like President Kennedy's post-Sputnik call to action brought an influx of resources into science and engineering at that time. 'Energy security is the space race of this millennium,' she says."

It added that Jackson's impact at Rensselaer "has grown swiftly and assuredly. In 7 years, she has revitalized and transformed the 183-year-old university into a financially solid, broad-based academic institution with a much greater diversity in the sciences and technology and a much-enhanced concentration of multidisciplinary academic programs -- a true renaissance for the oldest technology university in the nation." (See also "Terahertz Center Opening Signals Wave of RPI's Future.")
Under Jackson's leadership, Rensselaer's expanding research efforts now include an entrepreneurial Ph.D. program in fuel-cell technology. The program, funded under NSF's Integrative Graduate Education and Research Traineeship(s), trains students in manufacturing processes, materials development and modeling so the high-efficiency and environmentally friendly power generators can be put to efficient use.(Photo: RPI)
Her $1.4 billion campaign has already received more than $1.2 billion in gifts and gift commitments, including one anonymous, unrestricted gift of $360 million. The work has helped Jackson deepen research activities through a tripling of awards, attracting a much broader array of faculty and intellectual leaders and stimulating entrepreneurial educational activities. Jackson's managerial plan linking programs, plans and resource budgeting and allocation has helped Rensselaer become a national model for the transformation of higher education, the NSB said.

In addition to honoring her work at Rensselaer, the award recognizes Jackson for a lifetime of achievements in science and technology. A theoretical physicist at Fermilab for two years, then at the former AT&T Bell Laboratories in New Jersey from 1976-91, Jackson distinguished herself in studies and papers published in the fields of solid-state and quantum physics and optical physics. Her particular contributions involved optical and electronic properties of layered materials. In 1985, she was tapped by the first of three New Jersey governors who sought her service on various commissions and task forces in the state, beginning with her appointment to the New Jersey Commission on Science and Technology, on which she served for a decade.

In 1991, Jackson turned to education, joining Rutgers University as a physics professor. Her work at Rutgers got the attention of the White House, and in 1995, President Clinton appointed her to the US Nuclear Regulatory Commission (NRC). Coming into an agency often criticized for being too closely linked to industry, Jackson toughened standards of safety and instituted an entirely new framework for managing the safety and security of US nuclear power plants. The concept Jackson introduced, called "risk-informed, performance-based regulation," was a science-based policy that was implemented across NRC regulatory programs.

"Jackson tenaciously and effectively managed the new system, which is credited with improving the safety and economy of nuclear power production nationwide and laying the groundwork for the recent re-emergence of nuclear power in the United States," the NSB said. As elements of this system were adopted by other nations, Jackson expanded the commission's international influence. She spearheaded formation of the International Nuclear Regulators Association, for which she was its first chairman from 1997 until 1999.

Described by Time Magazine in 2005 as "perhaps the ultimate role model for women in science," Jackson achieved many firsts in her career. In 1973, she completed a doctoral degree in physics from the Massachusetts Institute of Technology (MIT), becoming the first African-American woman to receive a doctorate of any kind from MIT. Jackson was the first African American to sit on, then chair, the NRC. She was also the first African-American woman to be elected to the National Academy of Engineering and to preside over a major national research university.

Although proud of her groundbreaking achievements, Jackson prefers to focus on her track record in public policy and as an advocate for science and education. She speaks publicly of the nation's need to invest more heavily in basic scientific research and for other scientists to become more actively engaged in public policy. She recently told a gathering at Harvard's Kennedy School of Government that "the exponential rise in the volume and availability of information" influences the perception of science and scientists' roles, and the "acceptance of both." Her concerns focus on how this glut of information affects the public in "choos[ing] its truth and settl[ing] upon what it will accept as fact."

The NSB said, "Jackson said it is imperative that scientists exert consistent leadership to counter confusion over science and mistrust of their work."

In 1945, at President Franklin D. Roosevelt's urging, Vannevar Bush reported a series of recommendations for a post-war system of federal research and education to broaden the nation's scientific and technological expertise in many fields. His book, Science: The Endless Frontier, is often cited as the document spurring the eventual formation of the National Science Foundation in 1950.

The NSB established the Vannevar Bush Award in 1980 to honor Bush's unique contributions to public service. The annual award recognizes an individual who, through public service activities in science and technology, has made an outstanding "contribution toward the welfare of mankind and the nation."

The National Science Board is an independent 24-member body of policy advisors to the president and Congress on matters of science and engineering research, and is the policy making and oversight body for the National Science Foundation (NSF), an independent federal agency that supports almost all areas of fundamental research nationwide.

For more informatin, visit:

The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.