Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

  • Spectroscopy Tools Developed
Jun 2007
GAITHERSBURG, Md., June 11, 2007 -- Calibration tools have been developed to help correct and confirm the performance of analytic instruments that identify substances based on fluorescence.

Recent years have seen a significant increase in the development and use of fluorescence-based analytic techniques. Researchers can detect, measure and identify unknown substances -- potentially including chemical and biological weapons -- using spectroscopic techniques.

In fluorescence spectroscopy, scientists send a beam of light at a certain wavelength into a sample, exciting electrons in particular analytes or fluorescent labels, which then emit light at longer wavelengths with measurable energy levels. This resulting spectral signature, recorded by a fluorescence spectrometer, is distinct for different fluorescent compounds. Many of these assays are being used in areas -- including clinical diagnostics, environmental monitoring and drug development -- where regulatory requirements are strict and may require standards for instrument qualification and method validation.

To meet these needs, researchers at the National Institute of Standards and Technology (NIST) developed two ready-to-use, fluorescent-glass standard reference materials (SRMs), about the size of a pack of a gum, whose certified values can be used to correct fluorescence emission spectra for relative intensity. SRM 2940 (orange emission) has certified values for emission wavelengths from 500 to 800 nm when excited with light at 412 nm; SRM 2941 (green emission) has certified values for emission wavelengths from 450 to 650 nm when excited with light at 427 nm.

To use SRM 2941 to calibrate a fluorescence spectrometer, for instance, investigators would excite the glass with light at 427 nm and collect the resulting fluorescence emission from 450 nm to 650 nm. Spectral correction factors for the instrument then could be determined by comparing the measured intensity values to the certified values. The fluorescence spectrum of any unknown sample taken on that instrument that emits from 450 nm to 650 nm then could be corrected to yield its true spectral shape.

These standards also are resistant to photodegradation, making them good performance validation standards, NIST said. Researchers can use them on a day-to-day basis to validate performance by simply measuring their fluorescence intensity under the same conditions, even for fluorescence instruments with nontunable wavelength selectors, such as filter-based fluorometers and microscopes.

NIST said SRMs are among its most widely distributed and used products. The agency prepares, analyzes and distributes more than 1300 different materials worldwide that are used to check the accuracy of instruments and test procedures.

For more information, visit:

The emission of light or other electromagnetic radiation of longer wavelengths by a substance as a result of the absorption of some other radiation of shorter wavelengths, provided the emission continues only as long as the stimulus producing it is maintained. In other words, fluorescence is the luminescence that persists for less than about 10-8 s after excitation.
fluorescence microscopy
Observation of samples using excitation produced fluorescence. A sample is placed within the excitation laser and the plane of observation is scanned. Emitted photons from the sample are filtered by a long pass dichroic optic and are detected and recorded for digital image reproduction. 
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
A kind of spectrograph in which some form of detector, other than a photographic film, is used to measure the distribution of radiation in a particular wavelength region.  
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.