Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

Mini Oven Heats Fluids for LoC
Nov 2007
GAITHERSBURG, Md., Nov. 9, 2007 -- By embedding a thin-film microwave transmission line between a glass substrate and a polymer block, scientists have created what could be the world's smallest microwave oven. The tiny mechanism can heat a pinhead-sized drop of liquid inside a container slightly shorter than an ant and half as wide as a single hair. The "micro microwave" is intended for lab-on-a-chip (LoC) devices that perform chemical analyses on tiny samples.
The NIST micro microwave oven. The gold traces on the glass circle are microwave transmission lines. The 1.25-cm-wide polymer block over the transmission line in the center houses a miniature chamber in which a pinhead-sized drop of fluid is heated. (Photo courtesy NIST)
In a paper in the November 2007 Journal of Micromechanics and Microengineering, the National Institute of Standards of Technology (NIST) and George Mason University research team led by NIST engineer Michael Gaitan describes for the first time how a tiny dielectric microwave heater can be successfully integrated with a microfluidic channel to control selectively and precisely the temperature of fluid volumes ranging from a few microliters (millionth of a liter) to sub-nanoliters (less than a billionth of a liter). Sample heating is an essential step in a wide range of analytic techniques that could be built into microfluidic devices, including the high-efficiency polymerase chain reaction (PCR) process that rapidly amplifies tiny samples of DNA for forensic work, and methods to break cells open to release their contents for study.

After they embedded the microwave line between the glass substrate and polymer block, the researchers made a trapezoidal-shaped cut in the polymer block only 7-µm across at its narrowest -- the diameter of a red blood cell -- and nearly 4-mm long (about the length of an ant) to serve as the chamber for the fluid to be heated.

Based on classical theory of how microwave energy is absorbed by fluids, they developed a model to explain how their miniature oven would work. They predicted that electromagnetic fields localized in the gap would directly heat the fluid in a selected portion of the microchannel while leaving the surrounding area unaffected. Measurements of the microwaves produced by the system and their effect on the fluid temperature in the microchannel validated the model by showing that the increase in temperature of the fluid was predominantly due to the absorbed microwave power.

Once the new technology is more refined, the researchers hope to use it to design a microfluidic microwave heater that can cycle temperatures rapidly and efficiently for a host of applications.

The work is supported by the Office of Science and Technology at the Department of Justice’s National Institute of Justice.

For more information, visit:

An electromagnetic wave lying within the region of the frequency spectrum that is between about 1000 MHz (1 GHz) and 100,000 MHz (100 GHz). This is equivalent to the wavelength spectrum that is between one millimeter and one meter, and is also referred to as the infrared and short wave spectrum.
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
A material whose molecular structure consists of long chains made up by the repetition of many (usually thousands) of similar groups of atoms.
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.