Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
SPECIAL ANNOUNCEMENT
2016 Photonics Buyers' Guide Clearance! – Use Coupon Code FC16 to save 60%!
share
Email Facebook Twitter Google+ LinkedIn Comments

Nanobeads Prove Useful for Making Optical Molecular Sensors

Photonics Spectra
Mar 2008
David L. Shenkenberg

Optical chemical sensors are employed for testing in numerous fields, from marine research to the aerospace and automotive industries to medicine and biotechnology. Such sensors often consist of indicator fluorophores in a polymeric matrix.

Researchers from University of Technology Graz in Austria have explored nanoscale poly(styrene-block-vinylpyrrolidone) beads as a novel matrix for developing optical chemical sensors. They used these nanobeads to develop sensors for oxygen, temperature, pH, chloride and copper ions, creating techniques for immobilizing the sensing chemistry to either the core or the surface of the particles.

The size of the beads varied from 100 to 500 nm, with a mean of 245 nm, as determined with a particle size analyzer from Malvern Instruments GmbH of Herrenberg, Germany. The researchers commented that the preparation was easy.

NanoBead.jpg

The spectra of novel sensors based on nanobeads were homogenous and did not overlap, making the particles useful for sensing multiple molecules simultaneously.


To characterize the optical properties of the nanobeads, the investigators used several devices. They excited some of the beads with a violet LED (405-nm FWHM) from Roithner LaserTechnik of Vienna, Austria, and detected the luminescence with a Hamamatsu photomultiplier tube. They measured luminescence phase shifts with a two-phase lock-in amplifier from Stanford Research Systems Inc. of Sunnyvale, Calif. They measured other beads with a Hitachi spectrometer or with a BMG Labtech microplate reader. The scientists monitored biological cell toxicity and penetration with a Carl Zeiss microscope equipped with a Jenoptik digital camera.

Nanobead_fig2.jpg

This microscopic image shows cultivation media containing E. coli (left) and Pichia pastoris (right) along with nanobeads stained with a temperature indicator. Reprinted with permission of Analytical Chemistry.


Overall, each nanobead exhibited relatively homogenous spectra with little spectral overlap with other beads, making them useful for measuring multiple analytes at once. In cases of spectral overlap, the fluorescence lifetime could be used to resolve the signals from the particles, the researchers noted. The nanobeads exhibited fast response times, indicating that measurement of rapid processes is possible, and they could be detected even in complex media. They also did not penetrate or induce toxicity in bacterial cells, evidence that they could be useful for biological imaging.

Analytical Chemistry, Feb. 1, 2008, pp. 573-582.


Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x Subscribe to Photonics Spectra magazine - FREE!