Menu News Products Video Webinars White Papers EDU

Image Sensors Snag IEDs

SAN DIEGO, Calif., July 22, 2008 – Researchers at University of California, San Diego, are using statistical pattern recognition and image processing to help the U.S. military better detect hidden roadside explosives.

Since the beginning of the Iraq War in 2003, nearly 50 percent of coalition fatalities have been at the hands of roadside bombs or IEDs (improvised explosive devices). Typically fashioned out of military and/or commercially-sourced materials, IEDs are most often camouflaged as shoe boxes, cigarette cartons, plastic bags, garbage cans and milk cartons, to name a few.

Under a grant funded by the U.S. Department of Homeland Security through the National Science Foundation, UC San Diego structural engineering professor Francesco Lanza di Scalea is working on an imagery-based surveillance technique that uses visible and infrared images, analyzed by statistical pattern recognition algorithms to detect and classify suspicious objects such as camouflaged bombs and IEDs.

Lanza di Scalea is one of a handful of researchers in the United States who was awarded the one-time, three-year NSF grant.

The goal of the NSF program, called "Explosives and Related Threats: Frontiers in Prediction and Detection," is to advance fundamental knowledge in new technologies for sensors and sensor networks, and in the use of sensor data in control and decision making, particularly in relation to the prediction and detection of explosives and related threats. The NSF describes this research as critical to the nation's ability to deploy effective homeland security measures to protect civilians and U.S. military forces around the world.

"What we hope to do is use image processing and monitor different wavelengths of an object to detect a certain shape of an outside container, and to also determine whether it is empty, or if it has some metal inside," says Lanza di Scalea. "We are focusing on trying to detect or identify IED camouflages such as cardboard boxes and cigarette cartons found in Iraq and Afghanistan."

Of the three types of IEDs (roadside bombs, vehicle-born bombs and suicide bombs), roadside bombs are responsible for the most casualties, according to the Defense Department.

As part of their current research, Lanza di Scalea and his team collect both visible and infrared signatures of an object and then analyze the images and extract certain features like shape, texture and material type. The third step uses statistical pattern recognition to determine whether an anomalous object is harmless or not.

Lanza di Scalea said advances in the field of multispectral surveillance over the last few years have aided in this type of research.

Multispectral surveillance involves detecting objects and monitoring different wavelengths of radiation from an object going from visible to ultraviolet and infrared lights and combining all of those different radiation wavelengths to identify an object.

"Another area my research is benefiting from is statistical pattern recognition and being able to combine different features of an object to statistically classify it," says Lanza di Scalea. "For example, the brain can look at a road and learn what a normal road looks like based on different features like shapes and colors. If you put an object on the road the brain would know there is something different even though it hasn't seen that exact object before. It's that kind of statistical pattern recognition we want to use with computers to detect anomalous objects without prior training on the specific object."

Current explosive detection technology used by the U.S. government includes x-ray machines; machine olfacation (gas chromatography and differential mobility spectrometry); neutron activation, in which the machines bombard the suspect explosives with neutrons and read the gamma radiation decay signatures to determine the chemical compositions of the sample; and specially trained dogs.

"The U.S. government is always looking for improved methodologies to detect explosives both in military and civilian arenas," says Lanza di Scalea. "It's very rewarding to hopefully be able to contribute to a problem of national importance because ultimately it comes down to safety."

For more information, visit:

The ability to post comments on is one benefit of a FREE membership.

Please login or register, for FREE, to post comments:

Login Register
Signature Recognition Codes (SRC) this is a dynamically changing code that has an electromagnetic pattern that can be correlated or corresponds to most any material / Matter. This can be view as a Active or Passive pattern. The pattern recognition and image processing codes are embedded deep in the wave form of a Dv/Dt rate of change. You will also need to look at how to get these changes into the computer and that requires a very special deliver system . But your close
11/28/2012 9:34:10 PM

Facebook Twitter Google+ LinkedIn RSS Mobile Apps
x We deliver – right to your inbox. Subscribe FREE to our newsletters.