Search
Menu
PI Physik Instrumente - Revolution In Photonics Align LW LB 3/24

Record-Small Quantum Dots

Facebook X LinkedIn Email
EDMONTON, Alberta, Canada, Jan. 28, 2009 – Researchers at the National Institute for Nanotechnology and the University of Alberta have unveiled quantum dots composed of a single atom of silicon and measuring less than 1 nm in diameter, making them the smallest ever created. According to the researchers, the development brings quantum dot-based devices within reach. Four atomic quantum dots are coupled to form a "cell" for containing electrons. The cell is filled with just two electrons. Control charges are placed along a diagonal to direct the two electrons to reside at just two of the four quantum dots comprising the cell. This...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: January 2009
    Glossary
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    photonics
    The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
    quantum dots
    A quantum dot is a nanoscale semiconductor structure, typically composed of materials like cadmium selenide or indium arsenide, that exhibits unique quantum mechanical properties. These properties arise from the confinement of electrons within the dot, leading to discrete energy levels, or "quantization" of energy, similar to the behavior of individual atoms or molecules. Quantum dots have a size on the order of a few nanometers and can emit or absorb photons (light) with precise wavelengths,...
    atom-sized quantum dotsBasic ScienceCanadas National Institute for NanotechnologynanoNews & Featuresphotonicsquantum dotsRobert A. WolkowsiliconUniversity of Alberta

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.