Search
Menu
Cognex Corp. - Smart Sensor 3-24 GIF LB

New Directions in FRET

Facebook X LinkedIn Email
Recently published studies highlight the improved efficacy of FRET and FRET measurements as well as novel uses of the technique.

Gary Boas, News Editor

Förster resonance energy transfer (FRET) continues to provide researchers with a means to quantify protein-protein interactions and other molecular dynamics by labeling molecules with a donor and an acceptor, which give off a characteristic emission when in proximity to one another. Recent advances have led to the improved efficacy of FRET measurements as well as to novel applications of the technique — including, on the one hand, development of quantum dots as donors and incorporation of nanopipettes to increase the signal-to-noise ratio in single-molecule FRET measurements and, on the...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: December 2007
    Glossary
    förster resonance energy transfer
    Förster resonance energy transfer (FRET) is a mechanism describing the transfer of energy between two closely spaced fluorescent molecules. This phenomenon is named after the German scientist Theodor Förster, who first described it in the context of dipole-dipole interactions between molecules. In FRET, two fluorophores (molecules that fluoresce, or emit light, upon excitation) are involved: a donor and an acceptor. The donor fluorophore absorbs a photon and, instead of emitting a...
    quantum dots
    A quantum dot is a nanoscale semiconductor structure, typically composed of materials like cadmium selenide or indium arsenide, that exhibits unique quantum mechanical properties. These properties arise from the confinement of electrons within the dot, leading to discrete energy levels, or "quantization" of energy, similar to the behavior of individual atoms or molecules. Quantum dots have a size on the order of a few nanometers and can emit or absorb photons (light) with precise wavelengths,...
    Basic ScienceBiophotonicsCoatingsFeaturesFörster resonance energy transferMicroscopymolecular dynamicsquantum dotsSensors & Detectorsspectroscopy

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.