Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

  • New Reactor Boosts Solar Power
Jan 2011
PASADENA, Calif., Jan. 24, 2011 — Using a common metal most famously found in self-cleaning ovens, Sossina Haile hopes to change our energy future. The metal is cerium oxide — or ceria — and it is the centerpiece of a promising new technology developed by Haile and her colleagues that concentrates solar energy and uses it to efficiently convert carbon dioxide and water into fuels.

Solar energy has long been touted as the solution to our energy woes, but while it is plentiful and free, it can’t be bottled up and transported from sunny locations to the drearier, but more energy-hungry parts of the world. The process developed by Haile, a professor of materials science and chemical engineering at the California Institute of Technology (Caltech), and her colleagues could make that possible.

The researchers designed and built a 2-ft-tall prototype reactor that has a quartz window and a cavity that absorbs concentrated sunlight. The concentrator works “like the magnifying glass you used as a kid” to focus the sun’s rays, says Haile.

This is the ETH-Caltech solar reactor for producing H2 and CO from H2O and CO2 via the two-step thermochemical cycle with ceria redox reactions. (Image: ETH)

At the heart of the reactor is a cylindrical lining of ceria. Ceria — a metal oxide that is commonly embedded in the walls of self-cleaning ovens, where it catalyzes reactions that decompose food and other stuck-on gunk — propels the solar-driven reactions. The reactor takes advantage of ceria’s ability to “exhale” oxygen from its crystalline framework at very high temperatures and then “inhale” oxygen back in at lower temperatures.

“What is special about the material is that it doesn’t release all of the oxygen. That helps to leave the framework of the material intact as oxygen leaves,” said Haile. “When we cool it back down, the material’s thermodynamically preferred state is to pull oxygen back into the structure.”

Specifically, the inhaled oxygen is stripped off of carbon dioxide (CO2) and/or water (H2O) gas molecules that are pumped into the reactor, producing carbon monoxide (CO) and/or hydrogen gas (H2). Hydrogen gas can be used to fuel hydrogen fuel cells; CO, combined with H2, can be used to create synthetic gas, or “syngas,” which is the precursor to liquid hydrocarbon fuels. Adding other catalysts to the gas mixture, meanwhile, produces methane. And once the ceria is oxygenated to full capacity, it can be heated back up again, and the cycle can begin anew.

Sossina Haile and William Chueh stand next to the benchtop thermochemical reactor used to screen materials for implementation on the solar reactor. (Image: Caltech)

For all of this to work, the temperatures in the reactor have to be very high — nearly 3000 °F. At Caltech, Haile and her students achieved such temperatures using electrical furnaces. But for a real-world test, she said, “we needed to use photons, so we went to Switzerland.”

At the Paul Scherrer Institute’s High-Flux Solar Simulator, the researchers and their collaborators, led by Aldo Steinfeld of the institute’s Solar Technology Laboratory, installed the reactor on a large solar simulator capable of delivering the heat of 1500 suns.

In experiments conducted last spring, Haile and her colleagues achieved the best rates for CO2 dissociation ever achieved, “by orders of magnitude,” she said. The efficiency of the reactor was uncommonly high for CO2 splitting, in part, she says, “because we’re using the whole solar spectrum, and not just particular wavelengths.” And unlike in electrolysis, the rate is not limited by the low solubility of CO2 in water. Furthermore, Haile said, the high operating temperatures of the reactor mean that fast catalysis is possible, without the need for expensive and rare metal catalysts (cerium, in fact, is the most common of the rare-earth metals — about as abundant as copper).

In the short term, Haile and her colleagues plan to tinker with the ceria formulation so that the reaction temperature can be lowered, and to re-engineer the reactor to improve its efficiency. Currently, the system harnesses less than 1 percent of the solar energy it receives, with most of the energy lost as heat through the reactor’s walls or by re-radiation through the quartz window.

“When we designed the reactor, we didn’t do much to control these losses,” said Haile. Thermodynamic modeling by lead author and former Caltech graduate student William Chueh suggests that efficiencies of 15 percent or higher are possible.

Ultimately, Haile said, the process could be adopted in large-scale energy plants, allowing solar-derived power to be reliably available during the day and night. The CO2 emitted by vehicles could be collected and converted to fuel, “but that is difficult,” she said.

A more realistic scenario might be to take the CO2 emissions from coal-powered electric plants and convert them to transportation fuels. “You’d effectively be using the carbon twice,” Haile said. Alternatively, she says, the reactor could be used in a “zero CO2 emissions” cycle: H2O and CO2 would be converted to methane, would fuel electricity-producing power plants that generate more CO2 and H2O, to keep the process going.

A paper about the work was published in the Dec. 23 issue of Science.

The work was funded by the National Science Foundation, the State of Minnesota Initiative for Renewable Energy and the Environment, and the Swiss National Science Foundation.

For more information, visit: 

cerium oxide
A polishing material that has a quicker polishing action than rouge (ferric oxide) and that is cleaner to handle.
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.