Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

  • Photon Emission from Diamond Controlled
Oct 2011
CAMBRIDGE, Mass., Oct. 17, 2011 — Researchers have captured light in tiny diamond pillars embedded in silver, releasing a stream of single photons at a controllable rate.

The advance represents a milestone on the road to quantum networks in which information can be encoded in spins of electrons and carried through a network via light, one photon at a time.

The finding was published in Nature Photonics, appearing online Oct. 9. The research was carried out at Harvard University.

Researchers at the Harvard School of Engineering and Applied Sciences (SEAS) have managed to control the rate of emission of photons from diamond nanoposts, an advance toward quantum computing. (Image: Eliza Grinnell/Harvard SEAS)

"We can make the emission of photons faster, which will allow us to do more processing per second — for example, more computations — in the future quantum network," explained principal investigator Marko Loncar.

The device the team has built consists of parallel rows of tiny nanofabricated diamond posts, embedded in a layer of silver, each of which can act as a single photon source.

By removing the silver wrapping from their nanostructures, the team was also able to achieve a slower release of photons, which is of interest for probing the dynamics of the quantum system.

The breakthrough takes advantage of imperfections in the diamond's crystal lattice, where carbon atoms are replaced by other elements. To the naked eye, these imperfections can appear as discolorations in the diamond, turning it yellow in the case of nitrogen, for example. Occasionally, there is also a vacancy (missing carbon atom) next to the nitrogen atom.

Each nitrogen-vacancy imperfection can serve as a nearly perfect quantum emitter, capable of emitting red photons one by one, even at room temperature.

Imperfections in diamond can give the crystals a characteristic color. Nitrogen in these tiny diamonds (top) turns them yellow. Some imperfections, including the nitrogen-vacancies explored in this work, are luminescent and behave as excellent optically addressable quantum memory. The chip (bottom right) consists of diamond with a silver layer on top. (Image: Eliza Grinnell/Harvard SEAS)

The technology is a promising candidate for the realization of scalable, on-chip quantum networks.

"The color centers in diamond are very interesting as qubits for quantum information processing, where they can be used as memory to store information," said Loncar.

"More importantly, they can be interrogated — they can be written into and read out — with light."

The team fabricates diamond posts that contain negatively charged nitrogen vacancy centers, which can absorb light and hold its energy for a given amount of time, finally releasing it in the form of photons.

"The rate at which photons are emitted can be controlled by carefully nanoengineering the center's surrounding," said co-author Irfan Bulu.

Attaining fine control of that release, however, has been difficult.

SEM image of the diamond nanoposts used to advance quantum computing. Each one is approximately 100 nm wide and 200 nm tall. (Image: Jennifer Choy)

"One of the main challenges has been the efficiency with which you can write information into the spin of these color centers, as well as the efficiency with which you can collect photons emitted from the color centers," explained co-author Jennifer Choy.

"The other challenge has been the rate — how quickly you can perform these processes."

Previous work from Loncar's group solved the collection efficiency problem by using diamond nanowires to channel and direct the flow of photons.

The new research manipulates the radius of diamond pillars and adds the silver coating. The diamond-silver construction acts as an optical nanoresonator, creating a strong electromagnetic field around the emitter and offering a new level of control over the rate of emission.

Moreover, the device functions at room temperature — an essential requirement for practical computing applications — and the nanostructured chips are fully scalable.

"We've designed everything in parallel in a massive system, which allows us to make thousands or millions of devices with more or less the same properties, and we use conventional microfabrication and nanofabrication techniques, unlike what has been done in this field before," said researcher Birgit Hausmann.

For more information, visit:  

Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.