Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

  • Butterfly Wings Inspire Thermal Imagers
Feb 2012
NISKAYUNA, N.Y., Feb. 13, 2012 — Mother Nature’s 5-million-year-old butterfly design has led to the development of a new bio-inspired sensor that is faster, smaller and more sensitive than today’s thermal imaging devices.

Dr. Radislav Potyrailo and colleagues at GE Global Research, the technology development arm for the General Electric Co., have copied the microscopic design on the iridescent wings of the Morpho sulkowskyi butterfly to develop thermal imagers for more advanced applications for industrial inspection, medical diagnostics and the military.

Morpho butterfly scales doped with single-walled carbon nanotubes efficiently detect mid-wave infrared radiation as visible iridescence changes. The nanoscale pitch and the extremely small thermal mass of these biological optical resonators provide outstanding response sensitivity and speed in a heat-sink-free operation. (Image: Business Wire)

The scientists achieved this feat by doping the scales of the Morpho butterfly with single-walled carbon nanotubes to efficiently detect mid-wave infrared radiation as visible iridescence changes. The thermal imagers can sense temperature changes down to 0.02 °C at a response rate of 1/40 of a second.

Thermal imaging is utilized in a variety of industrial, medical and military applications today, ranging from the noninvasive inspection of industrial components and medical diagnostics to military applications such as thermal vision goggles and others. The new bio-inspired nanostructured system could enable broader application of thermal imaging by improving the manufacturability, image resolution, sensitivity and response time of new systems.

The new detection concept could be used in many applications where visual heat maps of imaged areas serve as a valuable condition indicator. For medical diagnostics, the imagers could better visualize inflammation in the body and detect changes in a patient’s health earlier. To aid firefighters, the technology could be used for handheld devices that enhance safety in operational situations. The nanostructured system also could be used to improve public safety and homeland protection through thermal security surveillance, or to see things at night and during the day in much greater detail than before.

The discovery resulted from studies led by Potyrailo and conducted at GE Global Research on the technological applications of photonic properties of Morpho butterfly wing scales. The team is now working toward fabricating photonic nanostructures inspired by the butterfly wing scales for highly selective vapor sensing applications. Commercial applications could reach the market within the next five years.

The findings were reported in Nature Photonics.

For more information, visit:

Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.