Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

  • Simulations Shed Light on Dark Solitons
Mar 2012
XI’AN, China, March 20, 2012 — The occurrence of multiple solitary optical waves, called dark photovoltaic spatial solitons, has now been described in a theoretical model using the beam propagation method.

Yuhong Zhang, a physicist from the Xi’an Institute of Optics and Precision Mechanics of the Chinese Academy of Sciences, and his colleagues performed the first numerical simulation of the formation and evolution of one-dimensional multiple dark solitons inside a photorefractive crystal.

Dark solitons are generated in photorefractive crystals, which respond to an incoming light beam by decreasing their refractive index as optical intensity increases, which causes the incoming beam to defocus. This effect is known as nonlinear self-defocusing.

In their experiment, the scientists showed that it was possible to create multiple dark solitons by expanding the width of the dark notch, which in previous studies was not given any special function. Depending on the initial beam phase, the solitons appeared in either odd or even numbers.

The researchers also confirmed previous findings that showed that when multiple solitons are generated, the separation between them becomes smaller. The solitons become progressively wider and less visible the farther away they are from the main dark notch entry location, they concluded.

Because the shape of dark solitons remains unaffected by the crystal in which they travel, they induce waveguides, which can be used to reconfigure optical beams by splitting them, among other applications.

The study appeared online March 15 in European Physical Journal D.

For more information, visit:  

The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
Any isolated wave that propagates without dispersion of energy. Specifically to photonics, an ultrashort pulse of laser light that propagates through a waveguide without characteristic chromatic dispersion.
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.