Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
share
Email Facebook Twitter Google+ LinkedIn Comments

  • Laser Built on a Silicon Chip

Photonics.com
Apr 2012
SINGAPORE, April 2, 2012 — A laser with a novel microloop mirror (MLM) design fabricated on a silicon chip uses III-V semiconductor materials — a step forward for high-speed optical communications and interconnects on electronics chips.

Active optical fibers with silicon photonic chips carry much more information for data interconnects than copper cables. Silicon could be the material of choice for wiring lab-on-a-chip devices, but for its poor ability to emit light.

Now, scientists at the A*Star Data Storage Institute have successfully built a laser on top of a silicon chip, bonding III-V semiconductor materials to the device to provide optical gain. Compared with conventional feedback mirrors based on device facets, the laser’s unique MLM design promises enhanced operation.


Scanning electron microscope image of the silicon-based microloop mirror. Light entering the waveguide from the left is guided around the loop and redirected back into the laser structure. The inset shows the laser spot photographed with an infrared camera. (Image: A*Star)

“Integrated Si/III-V lasers can take advantage of low-loss silicon waveguides while addressing the problem of low light-emission efficiency that silicon devices typically have,” said Doris Keh-Ting Ng, an A*Star researcher.

Attaching a Si/III-V laser atop silicon requires some difficult fabrication techniques, and device performances can weaken as a result. And because lasers require mirrors to maintain lasing action, such designs typically rely on the interface between air and the semiconductor – the facets of the chip. Unfortunately, such mirrors are not perfect and further reduce operation efficiency.

To improve on the drawbacks associated with mirrors, the team designed the MLM, which guides light emitted from one end of the laser along the waveguide, around a narrow bend, and then back into the device. The mirror at the other end of the device is still formed by the interface with air so that laser radiation can exit. The scientists achieved a light reflection efficiency of 98 percent with this design.

More than 30 delicate, high-precision fabrication steps were needed to build the device. The researchers plan to further enhance the laser by miniaturizing the device.

“Further improvements, for example, at the interface between the mirror and the lasing structure itself could lead to even better performance,” Ng said. “A laser with lower threshold and higher output power can possibly be achieved, leading to a potential solution to develop high-speed and low-cost optical communications and interconnects on electronics chips.”

The work appeared in Applied Physics Letters.

For more information, visit: www.research.a-star.edu.sg


GLOSSARY
optical communications
The transmission and reception of information by optical devices and sensors.
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.