Search
Menu
Deposition Sciences Inc. - Difficult Coatings - LB - 8/23

Optical material tailored from DNA

Facebook X LinkedIn Email
Ashley N. Paddock, [email protected]

The DNA-origami technique has enabled the construction of nanospiral staircases from artificial blocks of DNA molecules. The approach could be used to modify light in very specific ways and could lead to the development of “superlenses.”

An international team of scientists led by professor Tim Liedl of Ludwig Maximilian University of Munich and professor Friedrich C. Simmel of Technical University of Munich built the 57 x 34-nm staircases with 10-nm gold particles attached at regular intervals.


Although chemically alike, solutions of right- and left-handed nanospiral staircases interact in specific ways with circular polarized light. The staircases were built using the DNA-origami method. Courtesy of Tim Liedl, Ludwig Maximilian University.


Coupling light and nanostructures may help to significantly reduce the size of optical sensors for medical and environmental applications, while also making them more sensitive. However, a light wave that stretches over 400 to 800 nm is quite large in comparison with nanostructures of only a few nanometers. Yet, in theory, when the tiniest of structures work together in very specific ways, they, too, can interact well with light. Until now, it has not been possible to produce the requisite 3-D structures with nanoscale precision in sufficient quantities and purity using conventional methods.

“With DNA origami, we have now found a methodology that fulfills all of these requirements,” Simmel said. “It makes it possible to define in advance and with nanometer precision the three-dimensional shape of the object being created. Programmed solely using the sequence of basic building blocks, the nanoelements fold themselves into the desired structures.”

CASTECH INC - High Precision CNC Polished Aspherical Lenses

Electrons on the surface of the gold particles react with the electromagnetic field of light. The small clearance between the particles ensures that the gold particles of a DNA strand work in unison, amplifying the interactions manyfold. Theoretical physicist Alexander O. Govorov of Ohio University in Athens previously said that the effect should depend on the spacing, size and composition of the metal particles. The Munich physicists varied these parameters as they built the nanostructures using the DNA-origami method.

Their findings confirmed that aqueous solutions of right- and left-handed nanospiral staircases differ visibly in their interactions with circular polarized light. Spiral staircases with large particles show a significantly stronger optical response than those with small particles.


Fluids containing gold particles organized in chiral configurations exhibit designable optical activity. The particles are assembled with nanometer precision in space with the help of a rigid DNA-origami construct. Courtesy of Kuzyk, Schreiber, Hohmann.


They also discovered that the particles' chemical composition plays a significant role: When the gold particles were coated with a layer of silver, the optical resonance shifted from the red to the shorter-wave blue domain.

“We will now investigate whether we can use this method to influence the refraction index of the materials we manufacture,” Liedl said. “Materials with a negative refractive index could be used to develop novel optical lens systems — so-called superlenses.”

The work was funded by the Volkswagen Foundation, the DFG Cluster of Excellence Nanosystems Initiative Munich and the National Science Foundation.

Published: April 2012
Glossary
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
3-D nanostructuresAlexander O. GovorovBasic ScienceBiophotonicsBioScanDFG Cluster of Excellence Nanosystems Initiative MunichDNA origami methodDNA strandsEuropeFriedrich SimmelGermanygold particleslensesLudwig Maximilian University of Munichmedical applicationsnanonano spiral staircasesnanostructuresNational Science FoundationNewsOhio Universityoptical sensorsOpticsphotonicsrefraction indexSensors & DetectorsSuperlensesTechnical University of MunichTim LiedlVolkswagen Foundation

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.