Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
SPECIAL ANNOUNCEMENT
2016 Photonics Buyers' Guide Clearance! – Use Coupon Code FC16 to save 60%!
share
Email Facebook Twitter Google+ LinkedIn Comments

Matter waves conjured in Schrödinger’s hat

Photonics Spectra
Aug 2012
Ashley N. Paddock, ashley.paddock@photonics.com

SEATTLE – An amplifier devised to boost light, sound or other waves while hiding them inside an invisible container could lead to the construction of a quantum microscope that captures quantum waves and monitors electronic processes on computer chips.

The University of Washington system, dubbed “Schrödinger’s hat,” refers to the quantum mechanical paradox of Schrödinger’s cat and the creation of something from what appears to be nothing.


This graphic shows a matter wave hitting a so-called Schrödinger’s hat. The wave inside the container is magnified. Outside, the waves wrap as though they had never encountered any obstacle. Courtesy of G. Uhlmann, University of Washington.


“In some sense, you are doing something magical, because it looks like a particle is being created,” said Gunther Uhlmann, a mathematics professor at the university. “It’s like pulling something out of your hat.” Matter waves also can be shrunk inside the system, although concealing very small objects is not so interesting, Uhlmann said.

“You can isolate and magnify what you want to see and make the rest invisible,” he said.

By manipulating waves, the mathematicians hope to create a quantum microscope that can capture quantum waves.

“You can amplify the waves tremendously,” Uhlmann said. “And although the wave has been magnified a lot, you cannot see what is happening inside the container.”

Previously, the team collaborated on the math that formulates invisibility cloaks. The international group also created wormholes in which waves disappear in one place and reappear in another.

The new system has the potential to make various types of waves disappear, including longer ones such as quantum matter waves, sound and microwaves.

“From the experimental point of view, I think the most exciting thing is how easy it seems to be to build materials for acoustic cloaking,” Uhlmann said. “We hope that it’s feasible, but in science you don’t know until you do it.”

The team is now working toward building a prototype.

The findings appeared in the Proceedings of the National Academy of Sciences (doi: 10.1073/pnas.1116864109).


GLOSSARY
amplifier
A device that enlarges and strengthens a signal's output without significantly distorting its original waveshape. There are amplifiers for acoustical, optical and electronic signals.
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
quantum mechanics
The science of all complex elements of atomic and molecular spectra, and the interaction of radiation and matter.
Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x Subscribe to Photonics Spectra magazine - FREE!