Search
Menu
BAE Systems Sensor Solutions - Fairchild - Thermal Imaging Solutions 4/24 LB

Nanolaser Operates Below 3-D Diffraction Limit

Facebook X LinkedIn Email
AUSTIN, Texas, July 26, 2012 — Growing a smooth layer of silver onto a silicon substrate has improved the performance of nanolasers, a discovery that could lead to the emergence of nanophotonic devices with applications ranging from computing to medicine. Miniaturizing semiconductor lasers is crucial for the development of faster, smaller and lower-energy photon-based technologies such as ultrafast computer chips; highly sensitive biosensors for detecting, treating and studying diseases; and next-generation communication technologies. Such photonic devices could use nanolasers to generate optical signals and...Read full article

Related content from Photonics Media



    Articles


    Products


    Photonics Handbook Articles


    White Papers


    Webinars


    Photonics Dictionary Terms


    Media


    Photonics Buyers' Guide Categories


    Companies
    Published: July 2012
    Glossary
    nano
    An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
    optical communications
    The transmission and reception of information by optical devices and sensors.
    photonics
    The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
    3-D diffraction limitAmericasAsia-Pacificatomic smoothnessBasic ScienceBiophotonicsbiosensorsChih-Kang Shihcommunication technologiesCommunicationsgallium nitride nanorodgreen laserImagingLaserslow threshold lasernanonanolasersNanorodsNational Tsing Hua Universityon-chip communication systemoptical communicationsphotonic devicesphotonicsplasmonsResearch & Technologysemiconductor laserssemiconductorsSensors & DetectorsShanjr Gwosilicon substratespaserTexasultrafast computer chipsUniversity of Texas at Austin

    We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.