Search
Menu
Spectrogon US - Optical Filters 2024 LB

Phase-Shifted Flat Lens Creates Perfect Image

Facebook X LinkedIn Email
CAMBRIDGE, Mass., Aug. 24, 2012 — By moving the phase shifting of light to the surface of a lens instead of creating phase delays as it propagates through a material, Harvard engineers have created an ultrathin, flat lens that could potentially replace bulk components in optical systems.

Conventional lenses impart distortions and optical aberrations, including the “fish eye” effect, astigmatism and coma aberrations.

An artist’s rendition of a new ultrathin, flat lens focuses light without imparting the optical distortions of conventional lenses.
An artist’s rendition of a new ultrathin, flat lens focuses light without imparting the optical distortions of conventional lenses. (Image: Francesco Aieta)

The new 60-nm-thick flat lens, developed by physicists at the Harvard School of Engineering and Applied Sciences (SEAS), is completely accurate and does not require complex corrective techniques. It operates at telecom wavelengths and is scalable from the near-infrared to the terahertz spectrum bands.

The device is made of an ultrathin silicon wafer plated with a nanometer-thin layer of gold. Parts of the gold layer are stripped away, leaving behind an array of V-shaped structures, which are evenly spaced across the surface. When a laser is shone on the flat lens, the V-shaped structures act as nanoantennas that capture the incoming light and hold onto it for a short time before releasing it.

From left, Francesco Aieta, Federico Capasso and Patrice Genevet.
From left, Francesco Aieta, Federico Capasso and Patrice Genevet. (Image: Eliza Grinnell, SEAS Communications)


CASTECH INC - High Precision CNC Polished Aspherical Lenses
“Our flat lens opens up a new type of technology,” said principal investigator Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering at SEAS. “We’re presenting a new way of making lenses. Instead of creating phase delays as light propagates through the thickness of the material, you can create an instantaneous phase shift right at the surface of the lens.”

 (Left) A micrograph of the flat lens (diameter approximately 1 mm) made of silicon. The surface is coated with concentric rings of gold optical nanoantennas (inset), which impart different delays to the light traversing the lens. (right) The colored rings show the magnitude of the phase delay corresponding to each ring
(Left) A micrograph of the flat lens (diameter approximately 1 mm) made of silicon. The surface is coated with concentric rings of gold optical nanoantennas (inset), which impart different delays to the light traversing the lens. (right) The colored rings show the magnitude of the phase delay corresponding to each ring. (Image: Francesco Aieta)

Modifying the size, spacing and angle of the array of nanoantennas, dubbed a “metasurface,” enables the array to be tuned for specific wavelengths of light.

“In the future we can potentially replace all the bulk components in the majority of optical systems with just flat surfaces,” said lead author Francesco Aieta, a visiting graduate student from the Università Politecnica delle Marche in Italy. “It certainly captures the imagination.”

The study appeared in Nano Letters.

For more information, visit: www.seas.harvard.edu

Published: August 2012
Glossary
astigmatism
A lens aberration that results in the tangential and sagittal image planes being separated axially.
distortion
A general term referring to the situation in which an image is not a true-to-scale reproduction of an object. The term also is used to connote the temporal alteration of the signal's waveform shape. There are many types of distortion. See also anamorphic distortion; curvilinear distortion; keystone distortion; panoramic distortion; perspective distortion; radial distortion; stereoscopic distortion; tangential distortion; wide-angle distortion.
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
AmericaslensesWafersastigmatismcoma aberrationsCommunicationscorrective techniquesdistortionFederico Capassofiber opticsfish-eye aberrationsflat lensesFrancesco Aietagold layerHarvard School of Engineering and Applied SciencesHarvard SEASImagingItalylaws of diffractionMassachusettsmetasurfacenanonanoantennasoptical aberrationsoptical systemsOpticsphotonicsResearch & Technologysilicon wafertelecom wavelengthsterahertz wavelengthsultrathin flat lensUniversità Politecnica delle MarcheV-shaped structures

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.