Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics Handbook
More News
share
Email Facebook Twitter Google+ LinkedIn Comments

  • Training Light to Cool Materials

Photonics.com
Oct 2012
BETHLEHEM, Pa., Oct. 19, 2012 — By exploiting the resonance behaviors of opposing light-scattering phenomena, photons may one day be used to cool the materials through which they pass, rather than heating them. The breakthrough could lead to smaller, lighter and cheaper communication devices with faster switching times, increased output and higher operating voltages.

Photons typically maintain the same kinetic energy and wavelength when they exit a material as they do when they strike it. The small fraction of scattered photons whose kinetic energy and wavelength differ from those of incident photons is called Raman scattering. When this frequency is lower, it is called Stokes scattering, and when it is higher, anti-Stokes scattering.

The ratio of the occurrence of Stokes to anti-Stokes scattering is typically 35:1, but scientists would like to reduce this to 1:1. At this point, the material neither heats nor cools when struck by light, and even further, when, with more anti-Stokes than Stokes scattering, a material imparts its energy, and thus its heat, to the light passing through it.

Scientists at Lehigh University and at The Johns Hopkins University in Baltimore have achieved the most favorable ratio to date, reducing the ratio of Stokes to anti-Stokes in gallium-nitride (GaN) to 2:1.


Laser cooling could improve the utility of gallium-nitride, the most important semiconducting material after silicon, said Lehigh University electrical and computer engineering professor Yujie Ding. Courtesy of Lehigh University.

“We are the only group to minimize the Stokes-anti-Stokes ratio from 35:1 to 2:1 at room temperature,” said Lehigh electrical and computer engineering professor Yujie Ding. “We have accomplished this by exploiting the different resonance behaviors of Stokes and anti-Stokes scattering.”

GaN, considered the most important semiconducting material since silicon, is used in LEDs, laser diodes, solar cell arrays, biochemical sensors and transistors, and, because of its biocompatibility, electronic implants in humans. Laser cooling achieved with GaN could enable scientists to observe novel quantum effects and could make the high-electron mobility transistors used in satellites more resistant to damaging ultraviolet rays.

Laser cooling is currently achieved by adding a dopant to the lattices of certain crystalline materials, Ding said. But the portion of the lattice that actually cools represents only a small fraction of the entire lattice. If the right Stokes-anti-Stokes ratio can be achieved, every atom in the GaN lattice would cool and contribute to the cooling effect.

The scientists now plan to build an optical resonator.

“We are still puzzled by the fundamental limit to the Stokes-anti-Stokes ratio and by the feasibility of reaching a ratio of 1 or less,” Ding said. “We want to see, experimentally, how an optical resonator affects this ratio. We have already done the theoretical work for this. We want to conduct experiments inside a nanowire or other nanostructure to show how this ratio is affected by the structure.”

The study was published in Laser and Photonics Review (doi: 10.1002/lpor.201000028).  

For more information, visit: www4.lehigh.edu


GLOSSARY
laser cooling
A process and method by which manipulation and orientation of a given number of directed laser beams decreases the motion of a group of atoms or molecules such that their internal thermodynamic temperatures reach near absolute zero.  The !997 Nobel Prize in Physics was awarded to Steven Chu, Claude Cohen-Tannoudji and William D. Phillips for the development of methods to cool and trap atoms with laser light. 
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Facebook Google+ LinkedIn Facebook RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.