Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
share
Email Facebook Twitter Google+ LinkedIn Comments

  • Fishy Felon Breaks a Law of Physics

Photonics.com
Oct 2012
BRISTOL, England, Oct. 23, 2012 — A multilayer crystalline structure used by silvery fish to evade ocean predators bends the laws of physics and could be the key to developing better optical devices.

Reflective surfaces polarize light, but silver-colored fish such as sardines, herring and sprat do not polarize light in the way that most reflective surfaces do. They have overcome this basic law of reflection to conceal themselves from predators, according to new research from the University of Bristol.

Previously, it was thought that the fish’s skin — which contains multilayer arrangements of reflective guanine crystals — would fully polarize light and become less reflective.


The shiny skin of fish such as sardines has two types of guanine crystal — each with different optical properties — that do not polarize reflected light, but rather maintain its high reflectivity. The silvery fish skin could hold the key to better optical devices, University of Bristol scientists say. Courtesy of National Oceanic and Atmospheric Administration/National Marine Fisheries Service (NOAA/NMFS).

The researchers discovered that the skin of herring and sardines contains not one but two types of guanine crystal — each with different optical properties. By mixing these two types, the fish’s skin does not polarize the reflected light and maintains its high reflectivity.

“We believe these species of fish have evolved this particular multilayer structure to help conceal them from predators, such as dolphin and tuna,” said Dr. Nicholas Roberts of Bristol’s School of Biological Sciences. “These fish have found a way to maximize their reflectivity over all angles they are viewed from. This helps the fish best match the light environment of the open ocean, making them less likely to be seen.”

The fish’s silvery skin could hold the key to better optical devices, the researchers said.

“Many modern-day optical devices, such as LED lights and low loss optical fibers, use these nonpolarizing types of reflectors to improve efficiency,” said doctoral candidate Tom Jordan. “However, these man-made reflectors currently require the use of materials with specific optical properties that are not always ideal. The mechanism that has evolved in fish overcomes this current design limitation and provides a new way to manufacture these nonpolarizing reflectors.”

The findings were reported in Nature Photonics (doi: 10.1038/nphoton.2012.260)

For more information, visit: www.bris.ac.uk


GLOSSARY
law of reflection
The law stating that the angle of reflection is equal to the angle of incidence, the incident ray, reflected ray and normal to the surface, all being located in the same plane.
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
polarization
With respect to light radiation, the restriction of the vibrations of the magnetic or electric field vector to a single plane. In a beam of electromagnetic radiation, the polarization direction is the direction of the electric field vector (with no distinction between positive and negative as the field oscillates back and forth). The polarization vector is always in the plane at right angles to the beam direction. Near some given stationary point in space the polarization direction in the beam...
reflection
Return of radiation by a surface, without change in wavelength. The reflection may be specular, from a smooth surface; diffuse, from a rough surface or from within the specimen; or mixed, a combination of the two.  
Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Facebook Instagram LinkedIn Facebook RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.