Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
share
Email Facebook Twitter Google+ LinkedIn Comments

  • Material Absorbs Nearly 100% of IR Light

Photonics.com
Nov 2012
CAMBRIDGE, Mass., Nov. 27, 2012 — An ultrathin, tunable device developed at Harvard absorbs 99.75% of infrared light on demand and, when activated, looks like a black blob to IR cameras. The near-perfect absorber could expand the possibilities for energy harvesting and thermal detection.

Designed by scientists at the School of Engineering and Applied Sciences (SEAS) and at the University of California, San Diego, the instrument is composed of a 180-nm-thick layer of vanadium dioxide on a sheet of sapphire.

Although scientists have created many perfect absorbers before, none have had such versatile properties, the team said. When two mirrors sandwich an absorbing material in a Fabry-Perot cavity, for instance, light simply reflects back and forth until it is mostly gone. Other devices employ surfaces with nanoscale metallic patterns that trap and eventually absorb the light.

From left, Mikhail Kats, Federico Capasso and Shriram Ramanathan used unusual materials and interference effects to create a perfect absorber.
From left, Mikhail Kats, Federico Capasso and Shriram Ramanathan used unusual materials and interference effects to create a perfect absorber. They are pictured here in a scanning electron microscopy imaging suite at the Harvard Center for Nanoscale Systems. Courtesy of Caroline Perry, SEAS Communications.

“Our structure uses a highly unusual approach, with better results,” said principal investigator Federico Capasso, Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in electrical engineering at SEAS. “We exploit a kind of naturally disordered metamaterial, along with thin-film interference effects, to achieve one of the highest absorption rates we’ve ever seen. Yet our perfect absorber is structurally simpler than anything tried before, which is important for many device applications.”

Capasso’s team worked with scientists at Harvard and UCSD to take advantage of the surprising properties of the two materials they used.

Vanadium dioxide is typically an insulating material; i.e., it does not conduct electricity well. But it does undergo a dramatic transition when taken from room temperature to about 68 °C. As the temperature approaches a critical value, the crystal rearranges itself, and metallic islands appear as specks, scattered within the material. More metallic islands appear until the material becomes uniformly metallic.

Artist's rendition of the experimental setup used to measure the reflectivity of the vanadium-sapphire device.
Artist's rendition of the experimental setup used to measure the reflectivity of the vanadium-sapphire device. Modified from an illustration by Kirill Nadtochiy.

“Right near this insulator-to-metal transition, you have a very interesting mixed medium, made up of both insulating and metallic phases,” said SEAS associate professor of materials science Shriram Ramanathan, who synthesized the thin film. “It’s a very complex and rich microstructure in terms of its electronic properties, and it has very unusual optical properties.”

When manipulated correctly, those properties are ideal for infrared absorption.

The underlying sapphire substrate, meanwhile, has a major role as well. While usually transparent, its crystal structure actually makes it reflective and opaque, like a metal, to a narrow subset of infrared wavelengths. As a result, the combination of materials internally reflects and “devours” incident infrared light.

“Both of these materials have lots of optical losses, and we’ve demonstrated that, when light reflects between glossy materials, instead of transparent or highly reflective ones, you get strange interface reflections,” said SEAS graduate student Mikhail Kats. “When you combine all of those resulting waves, you can coax them to destructively interfere and completely cancel out. The net effect is that a film one hundred times thinner than the wavelength of the incident light can create perfect absorption.”

Left: The experimental setup used for measuring the reflectivity of the vanadium-sapphire device. The vanadium oxide layer is only 180 nm thick, much thinner than the wavelength of the incident infrared light. Right: At just the right temperature (light blue line), the reflectivity of the device drops almost to zero (99.75% absorbance) for infrared light at a wavelength of 11.6 µm.

Left: The experimental setup used for measuring the reflectivity of the vanadium-sapphire device. The vanadium oxide layer is only 180 nm thick, much thinner than the wavelength of the incident infrared light. Right: At just the right temperature (light blue line), the reflectivity of the device drops almost to zero (99.75% absorbance) for infrared light at a wavelength of 11.6 µm. Courtesy of Mikhail Kats.

The great challenge was not only to understand this behavior, but also to discover how to fabricate pure enough samples of the vanadium dioxide.

Ramanathan said vanadium oxide can exist in many oxidation states but only goes through a metal-insulator transition with vanadium dioxide close to room temperature. To grow the complex films, the researchers developed several techniques to allow “exquisite compositional and structural control, almost at the atomic scale.” The resulting phase enabled the researchers to observe the remarkable properties, which otherwise would have been difficult to see.

Because the device can be switched easily between its absorbent and nonabsorbent states, it is suitable for a variety of applications, including thermal imaging devices (bolometers) with tunable absorption, spectroscopy devices, tunable filters, thermal emitters, radiation detectors and energy-harvesting equipment.

“An ideal bolometer design needs to absorb all of the infrared light that falls on it, turning it to heat, and, correspondingly, its resistance should change a lot per degree change in temperature,” Kats said. “In principle, our new perfect absorber could be used to make incredibly sensitive thermal cameras.”

Details of the device were published in Applied Physics Letters.  

For more information, visit: www.seas.harvard.edu


GLOSSARY
bolometer
A thermometric instrument used for the detection and measurement of radiant energy. Its essential component is a short narrow strip covered with a dead black absorbing coating and mounted at the lower end of a long cylindrical tube having a stop across it to exclude unwanted radiation. The electrical resistance of the strip changes with the changes in temperature that arise from absorbing varying amounts of radiant energy.
infrared absorption
Infrared radiation absorbed by crystals as a result of the excitation of lattice vibrations in which ions having opposite charges move relative to one another. These vibrations take place in a narrow band of frequencies.
infrared camera
A camera that uses infrared optics to image and focus infrared radiation onto a recording medium sensitive to its wavelengths.
metamaterial
A material engineered from artificial matter not found in nature. The artificial makeup and design of metamaterials give them intrinsic properties not common to conventional materials that are exploited as light waves and sound waves interact with them. One of the most active areas of research involving metamaterials currently explores materials with a negative refractive index. In optics, these negative refractive index materials show promise in the fabrication of lenses that can achieve...
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
thermal imaging
The process of producing a visible two-dimensional image of a scene that is dependent on differences in thermal or infrared radiation from the scene reaching the aperture of the imaging device.
Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.