Search
Menu
PI Physik Instrumente - Revolution In Photonics Align ROSLB 3/24

QD method combines best of optical, electron microscopy

Facebook X LinkedIn Email
Ashley N. Rice, [email protected]

A fast, versatile and high-resolution technique that combines the best of optical and scanning electron microscopy could provide surface and subsurface viewing of features as small as 10 nm in size. This will be useful for a wide range of applications including materials characterization and the life sciences, its creators say.

Researchers at NIST have developed the microscopy method using cathodoluminescence to image nanoscale features. In an old tube television, a beam of electrons moves over a phosphor screen to create images; the new technique works in much the same way by scanning a beam of electrons over a sample that has been coated with specially engineered quantum dots (QDs).


A new microscopy technique developed at NIST works by scanning a beam of electrons over a sample that has been coated with specially engineered quantum dots. The dots absorb the energy and emit it as visible light that interacts with the sample at close range; the scattered photons are collected using a similarly closely placed photodetector (not depicted). Courtesy of Dill/NIST.


The QDs emit low-energy visible light very close to the surface of the sample, exploiting near-field effects of light. After interacting with the sample, the scattered photons are collected using a closely placed photodetector, allowing an image to be constructed.

The first demonstration of the technique was used to image the natural nanostructure of the photodetector itself. Because both the light source and detector are so close to the sample, the diffraction limit doesn’t apply, and much smaller objects can be imaged.

“Initially, our research was driven by our desire to study how inhomogeneities in the structure of polycrystalline photovoltaics could affect the conversion of sunlight to electricity and how these devices can be improved,” said Heayoung Yoon of the Energy Research Group at NIST. “But we quickly realized that this technique could also be adapted to other research regimes, most notably imaging for biological and cellular samples, wet samples, samples with rough surfaces, as well as organic photovoltaics.”

DataRay Inc. - ISO 11146-Compliant

The technique tackles two problems in nanoscale microscopy: the diffraction limit, which restricts conventional optical microscopes to resolutions no better than about half the wavelength of the light (about 250 nm for green light), and the relatively high energies and sample preparation requirements of electron microscopy, which are destructive to fragile specimens like tissue.

NIST researcher Nikolai Zhitenev, a co-developer of the technique, had the idea a few years ago to use a phosphor coating to produce light for near-field optical imaging, but at the time, no phosphor available was thin enough. Thick phosphors cause the light to diverge, severely limiting the image resolution.

This changed when the NIST investigators teamed with scientists from a company that engineers QDs for lighting applications. The QDs potentially could do the same job as a phosphor and be applied in a coating both homogenous and thick enough to absorb the entire electron beam while also thin enough that the light produced does not have to travel far to the sample.

The collaborators discovered that the QDs’ unique core-shell design efficiently produced low-energy photons in the visible spectrum when energized with a beam of electrons. The group then developed a deposition process to bind them to specimens as a film with a controlled thickness of approximately 50 nm.

The investigators now would like to develop the method further, working with end users, Zhitenev said.

Worcester Polytechnic Institute, QD Vision, Sandia National Laboratories and the Maryland NanoCenter at the University of Maryland also contributed to the research, which appeared online in AIP Advances (doi: 10.1063/1.4811275).

Published: September 2013
Glossary
cathodoluminescence
Light produced when a metal is bombarded with high-velocity electrons causing small amounts of the metal to vaporize and emit radiation. Also known as electronoluminescence.
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
quantum dots
A quantum dot is a nanoscale semiconductor structure, typically composed of materials like cadmium selenide or indium arsenide, that exhibits unique quantum mechanical properties. These properties arise from the confinement of electrons within the dot, leading to discrete energy levels, or "quantization" of energy, similar to the behavior of individual atoms or molecules. Quantum dots have a size on the order of a few nanometers and can emit or absorb photons (light) with precise wavelengths,...
scanning electron microscopy
Scanning electron microscopy (SEM) is an advanced imaging technique used in microscopy to obtain high-resolution, three-dimensional images of the surfaces of solid specimens. SEM achieves this by using a focused beam of electrons to scan the specimen's surface, resulting in detailed images with magnifications ranging from about 10x to 100,000x or higher. Key features and principles of scanning electron microscopy include: Electron beam: SEM uses an electron beam instead of visible light for...
AmericasBiophotonicsBioScancathodoluminescenceConsumerHeayoung YoonImagingMarylandMaryland NanoCenternanoNational Institute of Standards and TechnologyNewsNikolai ZhitenevNISToptical microscopyOpticsQD Visionquantum dotsSandia National Laboratoriesscanning electron microscopyUniversity of MarylandWorcester Polytechnic Institute

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.