Search
Menu
Gentec Electro-Optics Inc   - Measure With Gentec Accuracy LB

Gold nanoprobes + FRET = cancer insights

Facebook X LinkedIn Email
Ashley N. Rice, [email protected]

Gold nanoprobes paired with FRET microscopy could yield a new generation of biological imaging and sensing techniques – researchers could study cancer cells in more minute detail and measure the effectiveness of medicines at subcellular levels.

Gold nanoparticles have a number of advantages over the organic dye molecules currently used to study cells with fluorescence microscopy. They are less toxic to cells, more sensitive, probe over a longer distance, and are more photostable – meaning they are unchanged by light exposure.

University of Strathclyde scientists took these advantages into account when developing a multidisciplinary approach using gold nanoprobes paired with FRET microscopy to image message ribonucleic acids (mRNA) – a kind of nucleic acid present in all living cells that carries genetic codes from DNA to make protein. By examining key mRNAs at a cellular level, the scientists could detect diseases such as cancer at an early stage and determine the effectiveness of treatments.

“The nanoprobes are based on a type of ‘molecular handshake’ called Förster resonance energy transfer, or FRET, in which gold nanoparticles are linked with a fluorescent protein via a hairpin-structured single-stranded DNA,” said Dr. Yu Chen of the university’s department of physics. “Upon interacting with the target mRNA in the cell, the hairpin structure dissolves, and a fluorescent signal occurs – enabling the tracking and quantification of the disease-related mRNA at a cellular level, even down to the level of single molecules.

“The technology could allow the simultaneous detection of multiple types of RNA related to cancer, which would then raise the possibility of scientists eventually being able to screen patients in order to predict their risk of developing disease,” Chen said. “By allowing us to see what is happening inside cells, we also hope this research will lead to the development of techniques to study the efficacy of drugs.”

The probes could also deliver cancer drugs and other molecules directly to diseased tissues, bypassing healthy cells. The researchers also believe the technique could improve food and water safety.

“This new approach to imaging RNA at a single-cell level may also allow scientists to develop new methods to identify various microbes which may have contaminated food and water,” said Dr. Jun Yu of the Strathclyde Institute of Pharmacy and Biomedical Sciences. “Food safety is a global challenge, and using novel nanoprobes to detect food contamination by various microbes will open up a new way of addressing this crucial issue.”

The Biotechnology and Biological Sciences Research Council invested £119,000 in the project.
Rocky Mountain Instruments - Custom Assemblies MR

Published: September 2013
Glossary
nano
An SI prefix meaning one billionth (10-9). Nano can also be used to indicate the study of atoms, molecules and other structures and particles on the nanometer scale. Nano-optics (also referred to as nanophotonics), for example, is the study of how light and light-matter interactions behave on the nanometer scale. See nanophotonics.
bioimagingBiophotonicsBioScanBiotechnology and Biological Sciences Research Councilcancer detectionDavid Birchdrug deliveryEuropefood contaminationFRET microscopygold nanoprobesImagingJun YumRNAnanoNewsOpticsScotlandYu Chen

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.