Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
SPECIAL ANNOUNCEMENT
2016 Photonics Buyers' Guide Clearance! – Use Coupon Code FC16 to save 60%!
share
Email Facebook Twitter Google+ LinkedIn Comments

Gold nanoprobes + FRET = cancer insights

BioPhotonics
Sep 2013

GLASGOW, Scotland – Gold nanoprobes paired with FRET microscopy could yield a new generation of biological imaging and sensing techniques – researchers could study cancer cells in more minute detail and measure the effectiveness of medicines at subcellular levels.

Gold nanoparticles have a number of advantages over the organic dye molecules currently used to study cells with fluorescence microscopy. They are less toxic to cells, more sensitive, probe over a longer distance, and are more photostable – meaning they are unchanged by light exposure.

University of Strathclyde scientists took these advantages into account when developing a multidisciplinary approach using gold nanoprobes paired with FRET microscopy to image message ribonucleic acids (mRNA) – a kind of nucleic acid present in all living cells that carries genetic codes from DNA to make protein. By examining key mRNAs at a cellular level, the scientists could detect diseases such as cancer at an early stage and determine the effectiveness of treatments.

“The nanoprobes are based on a type of ‘molecular handshake’ called Förster resonance energy transfer, or FRET, in which gold nanoparticles are linked with a fluorescent protein via a hairpin-structured single-stranded DNA,” said Dr. Yu Chen of the university’s department of physics. “Upon interacting with the target mRNA in the cell, the hairpin structure dissolves, and a fluorescent signal occurs – enabling the tracking and quantification of the disease-related mRNA at a cellular level, even down to the level of single molecules.

“The technology could allow the simultaneous detection of multiple types of RNA related to cancer, which would then raise the possibility of scientists eventually being able to screen patients in order to predict their risk of developing disease,” Chen said. “By allowing us to see what is happening inside cells, we also hope this research will lead to the development of techniques to study the efficacy of drugs.”

The probes could also deliver cancer drugs and other molecules directly to diseased tissues, bypassing healthy cells. The researchers also believe the technique could improve food and water safety.

“This new approach to imaging RNA at a single-cell level may also allow scientists to develop new methods to identify various microbes which may have contaminated food and water,” said Dr. Jun Yu of the Strathclyde Institute of Pharmacy and Biomedical Sciences. “Food safety is a global challenge, and using novel nanoprobes to detect food contamination by various microbes will open up a new way of addressing this crucial issue.”

The Biotechnology and Biological Sciences Research Council invested £119,000 in the project.


Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x Subscribe to BioPhotonics magazine - FREE!