Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
SPECIAL ANNOUNCEMENT
2016 Photonics Buyers' Guide Clearance! – Use Coupon Code FC16 to save 60%!
share
Email Facebook Twitter Google+ LinkedIn Comments

Tapping Solar’s Full Potential

Photonics.com
Dec 2013
ORLANDO, Fla., & URBANA-CHAMPAIGN, Ill., Dec. 10, 2013 — The realization of solar cells’ full potential may be a little closer, thanks to newly created large sheets of nanotextured silicon microcell arrays. The discovery holds the promise of making solar cells lightweight, bendable, more efficient and easily mass-produced.

Converting sunshine into electricity is not a difficult process, but the lack of a national solar cell network reveals that much of the difficulty lies in doing so efficiently and on a large scale.


A printed cell. Images courtesy of the University of Central Florida.


But a team from the University of Illinois at Urbana-Champaign (UIUC) and the University of Central Florida in Orlando may be one step closer. The group used a light-trapping scheme based on a nanoimprinting technique in which a polymeric stamp mechanically embosses a nanoscale pattern onto the solar cell without additional complex lithographic steps. This approach provides the flexibility that researchers have been searching for, making the design ideal for mass manufacturing, said UCF assistant professor Debashis Chanda, lead researcher of the study.

Previously, scientists had suggested designs that showed higher rates of sunlight absorption, but how efficiently that sunlight was converted into electrical energy was unclear, Chanda said. This study demonstrates that the investigators’ light-trapping scheme offers higher electrical efficiency in a lightweight, flexible module.

The team believes that this technology could someday lead to solar-powered homes fueled by cells that are reliable and provide stored energy for hours without interruption.


Debashis Chanda helped create large sheets of nanotextured silicon microcell arrays that hold the promise of making solar cells lightweight, more efficient, bendable and easy to mass produce. 


Chanda, who joined UCF in the fall of 2012 from UIUC, has joint appointments at the Nanoscience Technology Center and the College of Optics and Photonics (CREOL). He has published multiple articles on light-matter interactions and metamaterials. For some of his pioneering works, Chanda was awarded a Department of Energy solar innovation award and a Natural Sciences and Engineering Research Council award, among others. He also earned a National Science Foundation Summer Institute Fellowship this year.

Other researchers on the project include Ki Jun Yu, Li Gao, Jae Suk Park, Yi Ri Lee, Christopher J. Corcoran, Ralph G. Nuzzo and John A. Rogers from UIUC.

The study's findings are featured in the November issue of Advanced Energy Materials.

For more information, visit: www.ucf.edu



GLOSSARY
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
solar cell
A device for converting sunlight into electrical energy, consisting of a sandwich of P-type and N-type semiconducting wafers. A photon with sufficient energy striking the cell can dislodge an electron from an atom near the interface of the two crystal types. Electrons released in this way, collected at an electrode, can constitute an electrical current.
Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.