Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
share
Email Facebook Twitter Google+ LinkedIn Comments

  • Broadening the Scope for Optically Active Compounds

Photonics.com
May 2014
KANAZAWA, Japan, May 14, 2014 — Creating optically active chiral compounds — which are becoming more and more important in chemical manufacturing — just got a bit easier.

A team from Kanazawa University has devised a method for producing chiral molecules via desymmetrizing compounds. The method allows 99 percent selectivity and could be useful in preparing optically active chemicals that contain nitrogen and oxygen, according to the researchers.

Chiral compounds are optically active in that one stereoisomer rotates the plane of incident polarized light to the left, while the other rotates it to the right. Similar methods already exist but the range of compatible compounds is often limited.


Desymmetrization of the divinyl carbinol was accomplished by the asymmetric 1, 3-dipolar cycloaddition of azomethine imines based on a magnesium-mediated, multinucleating chiral reaction system utilizing diisopropyl (R, R) tartrate as the chiral auxiliary. Courtesy of Kanazawa University. 


In their study, the researchers focused on divinyl carbinols, a compound that brings together an ethylene molecular group and an alcohol derived from methanol. Desymmetrization of this compound can provide new optically active alcohol derivatives that contain useful functional groups for further chemical transformations.

The researchers’ new approach expands on previous work in the field, which has demonstrated an asymmetric cycloaddition reaction where compounds with unsaturated double, triple or more bonds combine to form a ring.

The research is published in Chemistry: A European Journal (doi: 10.1002/chem.201302889). 

For more information, visit www.kanazawa-u.ac.jp.


Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.