Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
SPECIAL ANNOUNCEMENT
2016 Photonics Buyers' Guide Clearance! – Use Coupon Code FC16 to save 60%!
share
Email Facebook Twitter Google+ LinkedIn Comments

'Water Window' Poses Imaging Prospect

Photonics.com
Aug 2014
SALAMANCA, Spain, Aug. 22, 2014 — The “water window” of biological tissue can be exploited to achieve high-contrast microscope images, as well as precision spectroscopy, according to a new theoretical study.

Researchers from the Center for Pulsed Lasers said they have identified the physical mechanism to efficiently generate high-order harmonic radiation at high laser intensities beyond the saturation threshold of atoms and molecules.

It should be possible to develop coherent radiation in the 3.3- to 4.4-nm range that is not absorbed by the water in biological tissues, the researchers said. The lack of absorption in that range led to the term “water window.”

The researchers predict an increased harmonic yield when laser intensity is increased. This “contradicts the general belief of a progressive degradation of the harmonic emission at ultrahigh intensities,” the researchers wrote in the study.

Similar work focusing on hydrogen has been conducted in the past. The current study extends beyond that to argon atoms, which typically provide a high-enough frequency conversion to effect high-order harmonic generation.

The researchers combined classical analysis and quantum mechanical calculation resulting from “the numerical integration of the 3-D time-dependent Schröodinger equation complemented with the time-frequency analysis.”

The research was published in European Physical Journal D (doi: 10.1140/epjd/e2014-50086-6).

For more information, visit www.clpu.es.


Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.