Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

  • Laser Cooling Halts Trapped Molecule's Rotation
Sep 2014
EVANSTON, Ill., Sept. 2, 2014 — It’s relatively easy to trap molecules using lasers, yet they persist in rotating as if they were not trapped at all.

But a new laser cooling technique has helped a team from Northwestern University stop a trapped, rotating molecule dead in its tracks.

“We modify the spectrum of a broadband laser such that nearly all the rotational energy is removed from the illuminated molecules,” said Dr. Brian Odom, an assistant professor of physics and astronomy in Northwestern’s Weinberg College of Arts and Sciences.

In the study, the researchers used a customized laser to cool singly charged aluminum monohydride molecules from room temperature to minus 452 °F in a fraction of a second. The abrupt temperature drop immediately stopped the molecules’ tumbling motion.

The aluminum monohydride molecules were used because they do not vibrate when interacting with a laser.

“If I want to slow down a molecule, quantum mechanics tells me that it happens in steps,” Odom said. “And there is a very lowest step that we can get the molecule down to, which is what we’ve done.”

The new technique is faster, easier and more practical than conventional molecule control methods, the researchers said. Such control of molecules’ rotational and vibrational states is essential to using them in the construction of quantum computers.

“There is a lot you can do if you get one species of molecule under control,” Odom said.

The research was published in Nature Communications (doi: 10.1038/ncomms5783).

Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.