Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
SPECIAL ANNOUNCEMENT
2016 Photonics Buyers' Guide Clearance! – Use Coupon Code FC16 to save 60%!
share
Email Facebook Twitter Google+ LinkedIn Comments

Computer Model Details QD Interaction with Protein

Photonics.com
Jan 2015
SYRACUSE, N.Y., Jan. 16, 2015 — A new computer modeling approach could increase understanding of how nanoscale quantum dots (QDs) interact with biological systems.

QDs are used in a number of bioimaging applications, including in vivo imaging of tumor cells, detection of biomolecules and measurement of pH changes. But proteins tend to surround the nanoparticles, forming a corona that changes their sensitivity to light.

Protein corona around a CdSe QD.
A model of a firefly luciferase protein corona around a CdSe quantum dot. Courtesy of Drs. Shikha Nangia and Arindam Chakraborty/ Syracuse University.


Researchers at Syracuse University said they have addressed a “computational bottleneck” that limited theoretical study of protein coronas. Their method combines pseudopotential and explicitly correlated Hartree-Fock quantum mechanical calculations with classical molecular mechanics and dynamics, as well as Monte Carlo techniques.

The team modeled the formation of a corona around a 5 nm cadmium selenide QD, finding that it produced an 8-nm red shift. They said the technique can be applied to bigger and more complex QD systems.

The research was published in the Journal of Chemical Theory and Computation (doi: 10.1021/ct500681m).

For more information, visit www.syr.edu.


Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.