Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn Comments

  • Nanoparticle Works with 6 Types of Bioimaging
Jan 2015
BUFFALO, N.Y., Jan. 21, 2015 — A new type of nanoparticle traceable through six distinct imaging methods could help medical professionals better diagnose diseases and enhance identification of the boundaries of tumors.

The combination of imaging techniques could allow doctors to obtain a much clearer picture of what is happening inside the body, as it merges the results of multiple modalities.

A team led by the University at Buffalo (working with researchers from the Harbin Institute of Technology in China, the University of Wisconsin and Postech in South Korea) designed the nanoparticles.

Nanoparticles a fluorescing core and an outer porphyrin-phospholipid fabric.
The nanoparticles consist of a core that glows blue under near-infrared light and an outer porphyrin-phospholipid fabric. Courtesy of Dr. Jonathan Lovell/University at Buffalo.

They can be detected by six medical imaging techniques — photoacoustic, fluorescence, Cerenkov luminescence, up-conversion and CT and PET scanning — with a single injection.

In a study published in Advanced Materials (doi: 10.1002/adma.201404739), the researchers used the nanoparticles to examine the lymph nodes of mice. They found that CT and PET scans provided the deepest tissue penetration, while photoacoustic imaging showed blood vessel details that those scans missed. 

Each nanoparticle is a combination of two components: a core that glows blue under near-infrared light, and an outer porphyrin-phospholipid (PoP) fabric that wraps around it. Initially designed for up-conversion imaging, the core is made from sodium, ytterbium, fluorine, yttrium and thulium.

“This nanoparticle may open the door for new ‘hypermodal’ imaging systems that allow a lot of new information to be obtained using just one contrast agent,” said Buffalo professor Dr. Jonathan Lovell. “Once such systems are developed, a patient could theoretically go in for one scan with one machine instead of multiple scans with multiple machines.”

For more information, visit

Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.