Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
SPECIAL ANNOUNCEMENT
2016 Photonics Buyers' Guide Clearance! – Use Coupon Code FC16 to save 60%!
share
Email Facebook Twitter Google+ LinkedIn Comments

Hole-Transport Material Advances Perovskite PV Systems

Photonics.com
Jan 2016
LAUSANNE, Switzerland, Jan. 19, 2016 — A solar panel material has achieved 20.2 percent power-conversion efficiency while reducing the costs of photovoltaic systems.


A 3D illustration of fluorine-dithiophene molecules on a surface of perovskite crystals. Courtesy of Sven M. Hein/EPFL.

Perovskite materials have become popular for light-harvesting films. However, they require expensive hole-transporting materials whose function is to move positive charges generated when light hits the perovskite film. 

Now, a research team at the Swiss Federal Institute of Technology in Lausanne (EPFL) has engineered a hole-transporting material that costs only a fifth of the two existing material options, and offers an improved efficiency of 20.2 percent.

EPFL developed a molecularly engineered hole-transporting material: a simple dissymmetric fluorine-dithiophene (FDT). FDT can be easily modified, according to the researchers, meaning it could act as a blueprint for the next generation of low-cost hole-transporting materials.

"The best performing perovskite solar cells use hole transporting materials, which are difficult to make and purify, and are prohibitively expensive, costing over €300 per gram, preventing market penetration," said professor Mohammad Nazeeruddin. "By comparison, FDT is easy to synthesize and purify, and its cost is estimated to be a fifth of that for existing materials — while matching, and even surpassing their performance."

The research was published in Nature Energy (doi: 10.1038/nenergy.2015.17).



Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.