Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
SPECIAL ANNOUNCEMENT
2016 Photonics Buyers' Guide Clearance! – Use Coupon Code FC16 to save 60%!
share
Email Facebook Twitter Google+ LinkedIn Comments

Entangled Photons Could Advance Quantum Cryptography

Photonics.com
Mar 2016
VIENNA, March 29, 2016 — Three photons have been experimentally entangled in a high-dimensional quantum property related to the “twist” of their wavefront structure, a milestone achievement for quantum physics.

Entanglement is a counterintuitive property of quantum physics that scientists and philosophers have long studied; entangled quanta of light seem to exert an influence on each other, irrespective of how much distance is between them.

Researchers at the Institute of Quantum Optics and Quantum Information, the University of Vienna, and the Universitat Autonoma de Barcelona achieved the twisted photons, comparing the phenomena to a metaphorical quantum ice dancer, who has the uncanny ability to pirouette both clockwise and counter-clockwise simultaneously. A pair of entangled ice-dancers whirling away from each other would then have perfectly correlated directions of rotation: If the first dancer twirls clockwise then so does her partner, even if skating in ice rinks on two different continents.

"The entangled photons in our experiment can be illustrated by not two, but three such ice dancers, dancing a perfectly synchronized quantum mechanical ballet," said Vienna researcher Mehul Malik, the first author of the paper. "Their dance is also a bit more complex, with two of the dancers performing yet another correlated movement in addition to pirouetting. This type of asymmetric quantum entanglement has been predicted before on paper, but we are the first to actually create it in the lab."

Long-exposure photo of laser beams with a twisted wavefront. The beams have holes in the middle due to destructive interference at the center of the twists. Courtesy of the Faculty of Physics, University of Vienna. 
The scientists created their three-photon entangled state by using another quantum mechanical trick: they combined two pairs of high-dimensionally entangled photons in such a manner that it became impossible to ascertain where a particular photon came from. Besides serving as a test bed for studying many fundamental concepts in quantum mechanics, multiphoton entangled states such as these have applications ranging from quantum computing to quantum encryption.

Along these lines, the researchers developed a new type of quantum cryptographic protocol using their state that allows different layers of information to be shared asymmetrically among multiple parties with unconditional security.

"The experiment opens the door for a future quantum Internet with more than two partners and it allows them to communicate more than one bit per photon," said Vienna researcher Anton Zeilinger.

The researchers said many technical challenges remain before such a quantum communication protocol becomes a practical reality, but given the rapid progress in quantum technologies today, it is only a matter of time before this type of entanglement finds a place in the quantum networks of the future.

The research was published in Nature Photonics (doi: 10.1038/nphoton.2016.12).


GLOSSARY
photonics
The technology of generating and harnessing light and other forms of radiant energy whose quantum unit is the photon. The science includes light emission, transmission, deflection, amplification and detection by optical components and instruments, lasers and other light sources, fiber optics, electro-optical instrumentation, related hardware and electronics, and sophisticated systems. The range of applications of photonics extends from energy generation to detection to communications and...
Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.