Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
share
Email Facebook Twitter Google+ LinkedIn Comments

  • Optoacoustic Sensor Promises More Reliable Cardiological Diagnostics

Photonics.com
Apr 2016
HANNOVER, Germany, April 14, 2016 — A technique based on optical interferometry could enable ultrasonic methods to be used internally to gather information about the heart tissue. Until now ultrasonic methods have only been used externally, because the piezo electronical components necessary for internal use have not been sufficiently miniaturized to be inserted into the blood vessels.

A group of researchers at the Laser Zentrum Hannover eV (LZH) and the Technion-Israel Institute of Technology are working on an optoacoustical sensor for medical ultrasonic technology that could enable intravascular exams. The technology, based on optical interferometry, will allow an intravascular module to be equipped with an optoacoustical imaging sensor, providing an internal image of the tissue of the coronary blood vessels up to a depth of 1 mm.

Optoacoustic SensorTo achieve this, a guided laser impulse from an illuminating fiber is first absorbed by the blood vessel tissue. The resulting ultrasonics are then guided to a fiber-based ultrasonic detector via an acoustical lens. By transforming this signal into an optical signal, a complete image of the vascular walls can be made. An optical interferometer recognizes deviations in the reflection pattern, making the detection of abnormal or disease-based changes in the tissue possible.

The optoacoustical sensor consists of an ultrasonics-generating lighting fiber, an acoustical lens and an ultrasonic detector element. Courtesy of Laser Zentrum Hannover eV.


The scientists in the Laser Micromachining Group at LZH are developing the process engineering necessary for the production of the acoustical lenses. These will be inserted directly into the glass substrate. In order to do so, specific areas of the substrate will be removed first using the laser, and then polished.

Further parts of the intravascular sensor module, apart from the lens, are an ultrasonic detector element and a lighting fiber for ultrasonic stimulus. The design and conversion of the signals into an image that can be used for diagnostics is being developed by the scientists at Technion.

Intravascular examinations will give physicians a more detailed image of the vessel than can be achieved using external investigation methods, improving cardiological diagnostics. The optoacoustical sensor should have a significantly higher sensitivity and resolution, in comparison to present methods, making the diagnosis of heart disease more straightforward.

LZH is is an independent, nonprofit research institute engaged in R&D and consulting in the fields of photonics and laser technology. For more information, visit www.lzh.de/en. 



GLOSSARY
interferometry
The study and utilization of interference phenomena, based on the wave properties of light.
fiber laser
A laser in which the lasing medium is an optical fiber doped with low levels of rare-earth halides to make it capable of amplifying light. Output is tunable over a broad range and can be broadband. Laser diodes can be used for pumping because of the fiber laser's low threshold power, eliminating the need for cooling.
Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.