Close

Search

Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
share
Email Facebook Twitter Google+ LinkedIn Comments

  • System Pushes Better Light Control

Photonics.com
Mar 2014
CAMBRIDGE, Mass., March 27, 2014 — More precise control of light could be on the horizon, prompting advances in solar photovoltaics, detectors for telescopes and microscopes, and privacy filters for display screens.

Researchers from MIT have developed the first system that allows light of any wavelength to pass through from a specific direction and that reflects all light coming from other angles.

“It is a very fundamental building block in our ability to control light,” said researcher Marin Soljacic, a professor of physics at MIT.


In this angular-selective sample, a beam of white light passes as if through transparent glass. The red beam comes at a different angle and is reflected away, like a mirror. Courtesy of MIT.


Alternating a stack of about 80 ultrathin layers of two alternating materials, the investigators found that the thickness of each layer could be precisely controlled. The interface between the two materials typically causes reflections. However, at the Brewster angle, which provides appropriate polarization, there is no reflection at all.

Researcher Yichen Shen, a graduate student at MIT, said, “We are able to reflect light at most of the angles, over a very broad band [of colors] — the entire visible range of frequencies.”

The angular selectivity could be made narrower by adding more layers to the stack. Experiments conducted so far have seen the angle of selectivity at about 10°; about 90 percent of the light coming within that angle was allowed to pass through.

The study was performed with layers of glass and tantalum oxide, but the researchers say that any two materials with different refractive indices could be used.

Optical systems, such as microscopes and telescopes, could benefit from the researchers’ findings, allowing for better viewing of faint objects that are close to brighter ones. The filtering also could be applied to display screens on phones or computers, allowing only those viewing from directly in front to see them.

Shen said, “This could have great applications in energy, and especially in solar thermophotovoltaics.” 

The work was funded by the Army Research Office, MIT's Institute for Soldier Nanotechnologies, the US Department of Energy and the MIT S3TEC Energy Research Frontier Center. The research is published in Science (doi: 10.1126/science.1249799).

For more information, visit: www.mit.edu


GLOSSARY
color
The attribute of visual experience that can be described as having quantitatively specifiable dimensions of hue, saturation, and brightness or lightness. The visual experience, not including aspects of extent (e.g., size, shape, texture, etc.) and duration (e.g., movement, flicker, etc.).
glass
A noncrystalline, inorganic mixture of various metallic oxides fused by heating with glassifiers such as silica, or boric or phosphoric oxides. Common window or bottle glass is a mixture of soda, lime and sand, melted and cast, rolled or blown to shape. Most glasses are transparent in the visible spectrum and up to about 2.5 µm in the infrared, but some are opaque such as natural obsidian; these are, nevertheless, useful as mirror blanks. Traces of some elements such as cobalt, copper and...
light
Electromagnetic radiation detectable by the eye, ranging in wavelength from about 400 to 750 nm. In photonic applications light can be considered to cover the nonvisible portion of the spectrum which includes the ultraviolet and the infrared.
polarization
With respect to light radiation, the restriction of the vibrations of the magnetic or electric field vector to a single plane. In a beam of electromagnetic radiation, the polarization direction is the direction of the electric field vector (with no distinction between positive and negative as the field oscillates back and forth). The polarization vector is always in the plane at right angles to the beam direction. Near some given stationary point in space the polarization direction in the beam...
reflection
Return of radiation by a surface, without change in wavelength. The reflection may be specular, from a smooth surface; diffuse, from a rough surface or from within the specimen; or mixed, a combination of the two.  
Comments
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Facebook Instagram LinkedIn Facebook RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.