Search
Menu
Lumencor Inc. - Advancing Insights LB 5/24
Photonics Marketplace
41 articles

Photonics Handbook

Clear All Filters xlight beam detects x
Diffraction Gratings: Selection GuidelinesDiffraction Gratings: Selection Guidelines
David Ventola, Optometrics Corp., an Omega Optical Holdings company
Diffraction gratings are optical components with a periodic structure that separate light into beams traveling in predictable directions based on their wavelength. The grating acts as the dispersive...
What Is Photonics?What Is Photonics?
Photonics Media Editors
Photonics is the study of light and other types of radiant energy whose quantum unit is the photon. The impact of photonics on research, technology, navigation, culture, astronomy, forensics, and...
Scatter and BSDF Measurements: Theory and PracticeScatter and BSDF Measurements: Theory and Practice
Richard Pfisterer, Photon Engineering LLC
Except for direct illumination from the sun, laser, or other light source, everything we see or detect is ultimately scattered light. Light can be scattered or rescattered during its propagation to...
QCL Primer: History, Characteristics, ApplicationsQCL Primer: History, Characteristics, Applications
Hamamatsu Corporation
Since its first successful operation in 1960 at Hughes Research Labs, the laser technology has been at the center of innovation and research. Semiconductor lasers first made their appearance in 1962...
Nanopositioning: A Step AheadNanopositioning: A Step Ahead
Scott Jordan, Brian Lula, and Stefan Vorndran, PI (Physik Instrumente) LP
By its original definition, a nanopositioning device is a mechanism capable of repeatedly delivering motion in increments as small as one nanometer. Lately demands from industry and research have...
Measuring Small-Beam MFD: Overcoming the ChallengesMeasuring Small-Beam MFD: Overcoming the Challenges
DERRICK PETERMAN, PhD, MKS Ophir
Profiling beams under 10 µm in size is one of the more challenging beam profiling applications. There are numerous reasons for this, including the very small size. Focal plane arrays commonly...
Fiber Optics: Understanding the BasicsFiber Optics: Understanding the Basics
Engineering and Marketing Staff, OFS
Optical fibers are made from either glass or plastic. Most are roughly the diameter of a human hair, and they may be many miles long. Light is transmitted along the center of the fiber from one end...
Selecting a Photodetector: Using WITS$ as a Rough GuideSelecting a Photodetector: Using WITS$ as a Rough Guide
Earl Hergert and Slawomir Piatek, Hamamatsu Corporation
Light is a versatile tool for investigating physical and chemical processes in nature. Any specific system being analyzed may, through the light it emits or reflects, communicate information about...
Optical Design Software: Fundamentals and PotentialOptical Design Software: Fundamentals and Potential
Richard Pfisterer, Photon Engineering LLC
Optical design software allows the user to develop a configuration of optical elements that manipulate the trajectory of light for the purposes of creating an image, illuminating a target, coupling...
Lasers for Microscopy: Major TrendsLasers for Microscopy: Major Trends
Marco Arrigoni, Nigel Gallaher, Darryl McCoy, Volker Pfeufer, Matthias Schulze, and Daniel Callen, Coherent Inc.
Laser development for the microscopy market continues to be driven by key trends in applications, which currently include superresolution techniques, multiphoton applications in optogenetics and...
Interferometry: Measuring with LightInterferometry: Measuring with Light
Zygo Corporation
An interferometer is an instrument that compares the position or surface structure of two objects. The basic two-beam division of amplitude interferometer components consists of a light source, a...
Common Infrared Optical Materials and Coatings: A Guide to Properties, Performance, and ApplicationsCommon Infrared Optical Materials and Coatings: A Guide to Properties, Performance, and Applications
Jeffrey L. Tosi and Kumar M. Khajurivala, Janos Technology LLC
The optical materials selected for an optical system depend upon the application, the required system performance and the environment in which the system is to perform; thus the materials’...
Ultraviolet Filters: Past and PresentUltraviolet Filters: Past and Present
Sarah Locknar, PhD, Omega Optical LLC, an Omega Optical Holdings company
In their earliest forms, UV bandpass filters that were optimized for wavelengths less than 400 nm, such as the Schott UG or the Hoya U-series, were constructed of absorbing compounds in glass. Such...
Integrating Spheres: Collecting and Uniformly Distributing LightIntegrating Spheres: Collecting and Uniformly Distributing Light
Greg McKee, Labsphere Inc.
An integrating sphere’s function is to spatially integrate radiant flux (light). However, before one can optimize a sphere design for a particular application, it is important to understand how...
Lasers: Understanding the BasicsLasers: Understanding the Basics
Coherent Inc.
Over 60 years have passed since the first demonstration of a laser in 1960. After the initial spark of interest, lasers were for a while categorized as “a solution waiting for a problem,”...
Excimer Optics: High Power Demands High ReliabilityExcimer Optics: High Power Demands High Reliability
Michael A. Case, Teledyne Princeton Instruments, Business Unit of Teledyne Technologies
The first high-reflectance mirror coatings for the UV and vacuum UV (VUV) were of the Al + MgF2 type produced in the late 1950s. Coatings of this design are still used today for multigas cavity...
Optical Delay Lines: Key to Time-Resolved MeasurementsOptical Delay Lines: Key to Time-Resolved Measurements
MKS/Newport
One of the most critical elements of any time-resolved spectroscopy and dynamics experiment is the optical delay line. A typical optical delay line consists of a retroreflector or folding mirrors on...
Detectors: CCDs for Life-Science ApplicationsDetectors: CCDs for Life-Science Applications
Butch Moomaw, Hamamatsu Corporation, Systems Div.
Since their invention in the late 1960s, charge-coupled devices, also called CCDs, have found widespread use in imaging applications. Electronic cameras based on CCD technology are used in...
Optical Coating: Materials and Deposition TechnologyOptical Coating: Materials and Deposition Technology
CERAC, Inc., a subsidiary of Williams Advanced Materials; technical assistance from Pellicori Optical Consulting
Optical coatings are deposited as thin-film multilayers of a variety of materials using specific deposition techniques. Coatings are applied to optical components that are intended for use at...
Rules of ThumbRules of Thumb
Photonics Rules of Thumb Scientists and engineers tend to want to answer simple relational questions with a blackboard covered with equations, even when questioners just want a rough estimate to...
Infrared System Design: Understanding the ProcessInfrared System Design: Understanding the Process
William L. Wolfe, Professor Emeritus, University of Arizona, Optical Sciences Center
Infrared system design is not, like some circuit design, a synthetic process. One cannot start by stating the problem and proceeding in an orderly fashion to a final solution. Rather, we guess a...
Ultraviolet Reflectance Imaging: ApplicationsUltraviolet Reflectance Imaging: Applications
Dr. Austin Richards, Oculus Photonics
Reflected-ultraviolet imaging is a rather mysterious area of the imaging field. There is relatively little actual UV imagery to be found on the Internet or in the literature compared to near-infrared...
Nd:YAG Lasers: Standing the Test of TimeNd:YAG Lasers: Standing the Test of Time
Quantel USA
The ubiquitous Nd:YAG laser has played many roles over the years. For the military, it has provided rangefinding and target designation capabilities. When used with nonlinear optics or as a pump...
Photometry: The Answer to How Light Is PerceivedPhotometry: The Answer to How Light Is Perceived
Photo Research, Inc.
That portion of the spectrum that the eye can see — and its rainbow of colors — is rather small, covering approximately 360 to 830 nm. What colors we perceive depends on wavelength, while...
Photonics Packaging: Optical Communication ComponentsPhotonics Packaging: Optical Communication Components
Torsten Wipiejewski, VNT Management Oy, German Office
Photonic components are key elements for the information technology (IT). Photonics technology covers the generation of information (cameras, sensors), its transportation (optical communication),...
Quantifying Light: Intensity, Uniformity Hold the KeyQuantifying Light: Intensity, Uniformity Hold the Key
Steven Giamundo, Fiberoptics Technology, Inc.
Intensity and uniformity can be described using different physical attributes, which makes interpreting requirements somewhat confusing. This article intends to provide an explanation and serve as a...
Broadband Spectrophotometry: A Fast, Simple, Accurate ToolBroadband Spectrophotometry: A Fast, Simple, Accurate Tool
Iris Bloomer, n&k Technology, Inc.; Rebecca Mirsky, Al Shugart International
Designing devices that incorporate ultrathin films is an important means of enhancing yields. However, characterizing ultrathin films provides a challenge for mainstream metrology tools such as...
Infrared Spectral Selection: It Begins with the DetectorInfrared Spectral Selection: It Begins with the Detector
Austin Richards, FLIR Systems, Commercial Vision Systems
Spectral selection is a powerful tool that enhances conventional imaging tremendously. Most imaging systems, including the human eye, are designed to image light over a broad range of the spectrum....
Spectroscopy: The Tools of the TradeSpectroscopy: The Tools of the Trade
Dr. John R. Gilchrist, Clyde HSI
All optical spectrometry techniques rely on the measurement of radiant power. The configuration of the instrument varies based on the measurement technique: absorption, emission, luminescence, or...
Optical System Design: Keeping the Coatings in MindOptical System Design: Keeping the Coatings in Mind
JDSU
An optical coating engineer is frequently confronted with a difficult specification for a coating. Often the difficulty in the specification results from the particular form of the optical system. If...
Dynamic Interferometry: Getting Rid of the JittersDynamic Interferometry: Getting Rid of the Jitters
John Hayes and James Millerd, 4D Technology Corporation
Conditions on the factory floor and in industrial cleanrooms with high-capacity air filtration systems can hamper the use of interferometry. Another problem is the testing of large-aperture mirrors...
Nano-Optics Technology: Optical AlchemyNano-Optics Technology: Optical Alchemy
Hubert Kostal, NanoOpto Corp.
Optics today needs alchemy, and the forces that motivate microchip technology are a key reason why. Today, light can transmit and process digital information as well as electricity can — in...
Polygonal Laser Scanners: Fitting the Elements to the TaskPolygonal Laser Scanners: Fitting the Elements to the Task
Glenn E. Stutz, Lincoln Laser Co.
Reading and writing systems for polygonal scanners differ in the use of the scanner. However, many performance characteristics are similar for both. In writing applications, a light source, usually a...
Nano-Optics: New Rules for Optical ComponentsNano-Optics: New Rules for Optical Components
Hubert Kostal, NanoOpto Corp.
When physical structures get very small — on the order of molecular or atomic sizes with one or more dimensions on the nanoscale — their behavior and interactions with energy, including...
Optical Components: Finding Your Way Through the MazeOptical Components: Finding Your Way Through the Maze
CVI Melles Griot
Lenses come in a variety of shapes, sizes and materials. They can be made of a single piece of glass or have multiple elements; their surfaces can be spherical, aspheric or cylindrical; they can be...
Beam Diagnostics: Meeting the Need for High QualityBeam Diagnostics: Meeting the Need for High Quality
Coherent, Inc.
For any discussion of laser beam diagnostics, it is first necessary to define some terms that characterize beam properties. Broad definitions can include measurements of laser energy or power,...
NSOM: Discovering New WorldsNSOM: Discovering New Worlds
M. Kovar, Midako A. Nohe, N.O. Petersen and P.R. Norton, University of Western Ontario
NSOM is suitable for studies on the mesoscopic scale (several tens to hundreds of molecular dimensions). It has become an important tool in research and applications of semiconductors, organic layers...
Particle Image Velocimetry: Basics, Developments and TechniquesParticle Image Velocimetry: Basics, Developments and Techniques
M. Kelnberger, InnoLas GmbH; G. Schwitzgebel, Universität Mainz
Particle image velocimetry (PIV) is an experimental tool in fluid mechanics and aerodynamics. The basic principle involves photographic recording of the motion of microscopic particles that follow...
Adaptive Optics: Taming Atmospheric TurbulenceAdaptive Optics: Taming Atmospheric Turbulence
Tom Gonsiorowski, Adaptive Optics Associates, Inc., a Wholly Owned Subsidiary of Northrop Grumman Systems
To Isaac Newton the problem was clear, and in 1704 he realized the effects of atmospheric turbulence on image formation. Just as heat waves shimmering above a hot patch of ground can distort our...
Spectroscopy: Mastering the TechniquesSpectroscopy: Mastering the Techniques
Dr. John R. Gilchrist, Clyde HSI
The scope of optical spectroscopic instrumentation is indeed very broad. Many analytical methods rely on the interaction of radiation with matter and are often described in the context of quantum and...
Spectrum Analysis for DWDM: New Instruments Meet the ChallengeSpectrum Analysis for DWDM: New Instruments Meet the Challenge
Francis Audet, EXFO
As system and cable installers try to optimize their links, the preferred method has become high-speed DWDM. This demand for bandwidth has led to the development of new test and measurement...
Photonics Handbook

We use cookies to improve user experience and analyze our website traffic as stated in our Privacy Policy. By using this website, you agree to the use of cookies unless you have disabled them.