Search Menu
Photonics Media Photonics Buyers' Guide Photonics EDU Photonics Spectra BioPhotonics EuroPhotonics Industrial Photonics Photonics Showcase Photonics ProdSpec Photonics Handbook
More News
Email Facebook Twitter Google+ LinkedIn

  • Low-Noise Quantum Cascade Laser Driver

Photonics Showcase
Nov 2010
Wavelength Electronics Inc.Request Info
The QCL Series low-noise quantum cascade laser driver’s patented circuitry minimizes linewidth, spectral drift and center wavelength jitter. This OEM controller is available for CW control up to 2 A with low rms noise (0.7 μA with the QCL1000) for field-deployed or benchtop applications. The QCL Series is the ideal way to increase your chemical sensor performance. Visit us at Photonics West 2011, South Hall #2200.


* Message:
(requirements, questions for supplier)
Your contact information
* First Name:
* Last Name:
* Email Address:
* Company:
Address 2:
Postal Code:
* Country:
Phone #:
Fax #:

Register or login to auto-populate this form:
Login Register
* Required
1. The range of frequencies or wavelengths over which radiations are absorbed or emitted in a transition between a specific pair of atomic energy levels. The full width is determined between half-power points of the line. 2. In a laser, the range of frequencies over which most of the beam energy is distributed.
quantum cascade laser
A Quantum Cascade Laser (QCL) is a type of semiconductor laser that emits light in the mid- to far-infrared portion of the electromagnetic spectrum. Quantum cascade lasers offer many benefits: They are tunable across the mid-infrared spectrum from 5.5 to 11.0 µm (900 cm-1 to 1800 cm-1); provide a rapid response time; and provide spectral brightness that is significantly brighter than even a synchrotron source. Quantum cascade lasers comprise alternating layers of semiconductor...
Terms & Conditions Privacy Policy About Us Contact Us
back to top

Facebook Twitter Instagram LinkedIn YouTube RSS
©2016 Photonics Media
x We deliver – right to your inbox. Subscribe FREE to our newsletters.