Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


3-D imaging tracks the insides of single molecules

Compiled by BioPhotonics staff

A three-dimensional cell imaging method has been developed to study the complex spatial-temporal dynamics of protein transport, a challenging feat in the field of cell biology.

Because of cell-to-cell variations in thickness and the temporal properties of protein transport, scientists have faced many technical challenges trying to image such dynamic processes in the cell and in 3-D. Previous techniques were slow and suffered from poor Z-localization and 3-D tracking capability, say researchers at the University of Texas Southwestern Medical Center at Dallas and the University of Texas at Dallas in Richardson.


Illustrated are the strengths of multifocal plane microscopy over conventional microscopy techniques. Courtesy of S. Ram, UT Southwestern Medical Center.


To overcome the obstacles, the scientists used a combination of multifocal plane microscopy and nanodot labeling technology. They labeled single molecules in live cells and tracked their movement and interaction with other molecules in a thick cell sample over an extended period.

Initially, the technique was developed by the researchers to track the movement of therapeutic antibodies engineered in their lab. Although current microscopy technologies limit scientists to image only a single focal plane at a time, the scientists wanted to simultaneously image a sample across multiple planes.

Their findings, which were funded by the National Institutes of Health and the National Multiple Sclerosis Society, were reported at the 55th Biophysical Society Annual Meeting in Baltimore.

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media