Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Laser Spectroscopy Displays 12-nm Resolution

At Swiss Federal Institute of Technology (ETH) in Zurich, scientists have employed laser spectroscopy and scanning probe microscopy to resolve two molecules 12 nm apart in a crystal host. The technique, which also detected dipole-dipole coupling in the molecules, promises to enable the controlled manipulation of the entanglement between such samples, opening the door to nanoscale quantum-state engineering and to a better understanding of light-harvesting complexes.

In the work, which appeared in the Oct. 11 issue of Science, the researchers used a dye laser with a tunable wavelength near 578 nm to address single terrylene molecules in a 250-nm-thick para-terphenyl crystal at a temperature of 1.4 K. They generated a local electric field in the sample with a 3-µm-diameter, silver-coated micro-sphere on a fiber tip, which induced local inhomogeneous Stark shifts in the fluorescent response that enabled them to deduce the position of the molecules.

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media