Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


InGaN Alloys May Yield Full-Spectrum Solar Cells

A team of scientists at the University of California, Berkeley, Lawrence Berkeley National Laboratory, also in Berkeley, and at Cornell University in Ithaca, N.Y., has reported that the bandgap energy of InN is approximately 0.7 eV at room temperature, rather than 2 eV, as suggested in previous studies. Multijunction photovoltaic cells fabricated of InN and GaN to form InGaN ternary alloys with bandgaps of 0.7 to 3.4 eV thus may cover the entire solar spectrum and offer conversion efficiencies of 50 to 70 percent.

The researchers investigated ultrapure InN films grown on sapphire by molecular beam epitaxy, rather than by sputtering, as in previous work. They performed optical absorption measurements with an NIR-VIS-UV spectrophotometer and IR reflection experiments with a Fourier transform IR spectrometer. Their results appeared in the Nov. 15 issue of Physical Review B.

Because InGaN alloys tolerate relatively large lattice mismatches, the researchers are confident that it should be possible to construct inexpensive photovoltaic cells of the materials, in which the bandgaps of different layers would be tuned to absorb particular components of the solar spectrum. A challenge remains in the development of P-type InGaN alloys.

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media