Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Tunneling Electrons Stimulate Individual Molecules

Using a scanning tunneling microscope, a research team at the University of California, Irvine, has induced photoemission in individual porphyrin molecules on an aluminum oxide film, yielding fluorescence patterns that depend on the molecular conformations. The technique, which was reported in the Jan. 24 issue of Science, may find applications in the study of electron dynamics in conjugated polymers and organic molecules and of the influence of local plasmon modes on intermolecular fluorescence resonance energy transfer.

In the experiments, the researchers employed a homebuilt ultrahigh-vacuum scanning tunneling microscope with silver or tungsten tips. They found that the silver tips enabled higher photon emission efficiencies and revealed greater details in the resulting emission spectra and intensities. Sample bias voltages were 2 to 2.4 V, and the tunneling current was 0.5 nA.

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media