Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Three-Dimensional Process Sculpts Waveguides in Silicon

Daniel S. Burgess

Researchers at the University of California, Los Angeles, have reported a technique that is based on the separation by implantation of oxygen process that enables the three-dimensional fabrication of waveguide and microcavity structures in silicon. The method promises applications in the development of optical chips, and it may be applied to the manufacture of wavelength division multiplexing filters.

Separation by implantation of oxygen involves the selective formation of SiO2 layers in a silicon substrate by exposing the host to a source of oxygen ions and annealing the material at high temperature. In the work, the researchers applied a semitransparent mask made with a thermally grown oxide before the implantation and anneal steps to change the depth of implantation and the subsequent overlayer growth. The technique yielded 286-nm-thick buried rib waveguides with widths of 2 to 12 µm that exhibited optical losses of 3 to 4 dB/cm.

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media