Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Ion-Photon Entanglement Demonstrated

Researchers at the University of Michigan in Ann Arbor, have demonstrated quantum entanglement between a single trapped cadmium ion and a photon emitted by the ion. The work, which was published in the March 11 issue of Nature, points to potential applications not only in scalable quantum information processing schemes involving multiple and remotely located entangled ions, but also in quantum communication and cryptography.

In the experiment, the researchers used a polarized 214.5-nm laser pulse to initialize a single cadmium ion held in a radio-frequency trap to a particular hyperfine ground state. A second pulse then excited the ion to a higher state, from which it decayed and emitted a photon. After a microwave rotation pulse prepared the ion for measurement, a third laser pulse was used to detect the internal state of the atom.

To observe and quantify entanglement, the researchers compared the polarization of the emitted photon and the state of the ion. Over approximately 1000 trials, the system demonstrated an entanglement fidelity of at least 0.87.

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media