Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Frequency-Doubled Nd:YAG Generates 200 W

Breck Hitz

A high-power green Nd:YAG laser has been developed at Mitsubishi Electric Corp.'s Advanced Technology R&D Center in Amagasaki, Japan, and is being studied for the crystallization of amorphous silicon films into polycrystalline silicon films during the fabrication of thin-film transistor display screens. The laser's 200-W second-harmonic average output power apparently sets a world record and is at least a factor of two greater than any commercial competitor.


Figure 1. A wedge lens coupled the pump power from the diode stacks into the Nd:YAG laser rods.

Tetsuo Kojima, who described the laser at CLEO in San Francisco in May, provided additional details in a discussion after the conference. He explained that each Nd:YAG rod in the laser is pumped by six individual diode stacks and that the diodes' output is coupled into the rods with a wedge lens (Figure 1). The laser comprises four rods, with a 90° polarization rotator between each pair of rods to alleviate thermal birefringence (Figure 2).


Figure 2. The ~1 kW of 1.06-µm output of the four-rod Nd:YAG laser was frequency-doubled in an external crystal aligned for Type II phase-matching.

The team first developed a burst-mode version of the laser pumped by 400-µs pulses from the diodes at a 250-Hz repetition frequency (i.e., a 4-ms period). An acousto-optic modulator Q-switched the laser at a repetition frequency of 70 kHz. The laser's output beam, containing ~1 kW of average 1.06-µm power, had an M2 of approximately 9. It was frequency-doubled in a 15-mm-long LiB3O5 crystal aligned for Type II phase-matching, to produce 200 W of 532-nm power.


Figure 3. The 200-W green output of the frequency-doubled laser was converted into a top-hat intensity distribution for annealing thin-film transistor display screens.

The burst-mode behavior -- with a 10 percent duty cycle -- was not optimal for the application, so the engineers refined the design for continuous pumping. The laser was Q-switched at a significantly lower rate, 4 kHz. Although it produced lower infrared power, the laser's conversion efficiency was greater because of its higher peak power, so it again produced 200 W of average green power. This second-harmonic output was stable for many hours, and the beam was shaped into a top-hat intensity distribution for annealing thin-film transistor screens (Figure 3).

Although laser annealing of these display screens has traditionally relied on ultraviolet excimer lasers, Kojima and his co-authors conclude that frequency-doubled Nd:YAG is a viable alternative that requires less daily maintenance.

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media