Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


X-Rays Shine Light on HID Lamps

GAITHERSBURG, Md., April 25 -- An x-ray technique developed by physicists at the National Institute of Standards and Technology (NIST) is helping to improve the design and energy efficiency of the bright white lights often used to illuminate stadiums, roads and many other settings.

High-intensity gas discharge (HID) lamps produce 26 percent of the nation's light output but, as a result of their high energy efficiency, consume only 17 percent of the electricity used for lighting. Continuing improvements in energy efficiency and other features will reduce electricity use and the negative environmental effects of power generation. Improved efficiency could save lots of money: HID lamps consume roughly 4 percent of US electricity, equivalent to about $10 billion annually.

The NIST technique uses x-ray imaging to improve understanding of the complex science underlying the HID lamp's design. Such lamps have two electrodes in a ceramic tube that contains small amounts of mercury and metal-halide salts. An electric current between the electrodes heats the lamp, vaporizing the mercury and metal-halide salts and producing a gas of electrically charged particles, or plasma. Metal atoms, excited by collisions with electrons in the plasma, emit light at many different wavelengths, producing a bright, white light.

In the NIST technique, an HID lamp is placed in an intense beam of x-rays. The x-rays penetrate the lamp's ceramic housing but are partially absorbed by the mercury gas in the lamp, casting a shadow in the beam. A digital camera behind the lamp captures a high-resolution, 2-D image of this x-ray shadow showing the density of mercury atoms in the discharge. From the mercury distribution, the temperature distribution in the lamp can also be determined. This technique has been used to quantify processes that consume power without producing light.

Researchers are demonstrating that the technique can be implemented in industrial laboratories using small-scale x-ray sources. The project provides measurement support to universities participating in the Advanced Light Source Research Program-II (ALITE-II) of the Electric Power Research Institute, a consortium working to improve lighting technology by combining university, industry and government laboraty pre-competitive research.

For more information, visit: www.nist.gov


Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media