Photonics Spectra BioPhotonics Vision Spectra Photonics Showcase Photonics Buyers' Guide Photonics Handbook Photonics Dictionary Newsletters Bookstore
Latest News Latest Products Features All Things Photonics Podcast
Marketplace Supplier Search Product Search Career Center
Webinars Photonics Media Virtual Events Industry Events Calendar
White Papers Videos Contribute an Article Suggest a Webinar Submit a Press Release Subscribe Advertise Become a Member


Strained Silicon Enables Electro-Optic Modulator

A switchable silicon waveguide demonstrated by scientists at Danmarks Tekniske Universitet in Lyngby, Denmark, points to the possibility of integrating electronics and photonics in monolithic components for computing and telecommunications applications. They presented their findings in the May 11 issue of Nature.

The waveguide employs an amorphous Si3N4 straining layer to change the refractive index of the silicon waveguide by breaking the material’s crystal symmetry. The researchers note that the switching speed of the approach is not limited by charge mobility or recombination times, as in previous silicon-based optical modulators that operate by changing the carrier concentration through the application of current.

To employ the strain-induced electro-optical effect for optical modulation, they propose replacing one leg of a silicon Mach-Zehnder interferometer with such a waveguide.

Explore related content from Photonics Media




LATEST NEWS

Terms & Conditions Privacy Policy About Us Contact Us

©2024 Photonics Media